Heat wave attribution assessment using deep learning

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-09-12 DOI:10.1038/s43588-024-00700-w
Fernando Chirigati
{"title":"Heat wave attribution assessment using deep learning","authors":"Fernando Chirigati","doi":"10.1038/s43588-024-00700-w","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 9","pages":"654-654"},"PeriodicalIF":12.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00700-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习评估热浪归因
与天气有关的极端事件--如热浪、洪水和干旱--呈上升趋势,据报道,人为温室气体排放增加了此类事件的频率和强度。然而,确定和量化人为气候变化对极端事件的确切影响仍然是一项具有挑战性的任务。最近在事件归因研究方面取得的进展试图量化人为作用力的影响,但这些研究也有一定的局限性,例如由于观测记录的长度有限,归因估计的不确定性较高,而且计算成本较高,因此难以进行快速归因评估。在最近的一项研究中,Noah S. Diffenbaugh 及其同事介绍了一种基于深度学习的框架,以解决上述不足,并评估人为气候变化对个别极端高温事件的影响。作者利用卷积神经网络(CNN)作为其框架的基础。值得注意的是,利用气候模型模拟数据训练了多个 CNN 来预测每日最高气温(TMAX)。为了了解历史极端事件如何受到人为气候强迫的影响,首先,将未见过的历史再分析数据(将过去的天气观测数据与模拟数据相结合)作为 CNN 的输入,以准确预测不同水平的全球平均表面温度(GMT)下的最高气温(TMAX)。然后,作者采用部分依赖性分析--一种可解释的方法,显示特定特征如何影响预测结果--来创建不同年度 GMT 水平下极端事件的反事实版本。最终,通过计算反事实 CNN 预测对 GMT 输入值的敏感性,该框架能够量化人为强迫对事件规模的贡献。在实验中,作者分析了不同的历史热浪事件,结果与之前的报告和公开发表的结果基本一致。总之,这项工作表明,深度学习有潜力用于对极端事件进行快速、低成本的归因评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Collective deliberation driven by AI. Harnessing deep learning to build optimized ligands. MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling. A deep learning approach for rational ligand generation with toxicity control via reactive building blocks. Enhancing protein stability prediction with geometric learning and pre-training strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1