Beikai Ding, Chengsheng Yang, Yue Chen, Wei-Peng Shao, Fan Yang, Chi Zhang, Zheng Wang, Yongmei Liu, Yong Cao, Yifeng Zhu, Xinhe Bao
{"title":"Cr2O3 clusters on ZnO as hydrogen pools for efficient syngas‐to‐light olefins","authors":"Beikai Ding, Chengsheng Yang, Yue Chen, Wei-Peng Shao, Fan Yang, Chi Zhang, Zheng Wang, Yongmei Liu, Yong Cao, Yifeng Zhu, Xinhe Bao","doi":"10.1002/cctc.202401421","DOIUrl":null,"url":null,"abstract":"Interfaces of mixed oxide are often considered the primary catalytic sites, yet the functionalities of the surrounding environments are less understood. Composite oxides, particularly ZnO‐Cr2O3, show high activity and selectivity for syngas conversion, with ZnO dissociating H2 to hydrides and Cr2O3 activating CO. However, hydrides on ZnO cannot remain stable at temperatures above room temperature. Focusing on the puzzlingly high performance despite ZnO’s inability to stabilize active hydrides at reaction temperatures (300‐400 oC), we clarified the roles of each phase using models of Cr2O3/ZnO and ZnO/Cr2O3. Cr2O3 clusters on ZnO effectively stabilize and store hydrides, significantly enhancing syngas conversion compared to individual oxides or ZnO/Cr2O3. An acetate/ketene pathway on Cr2O3/ZnO was identified, driven by the unique role of Cr2O3 clusters in regulating local hydride and CO coverages, unlike other routes observed on ZnO/Cr2O3. These insights advance the understanding of the active structures and functionalities of mixed oxides in catalysis.","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"73 3 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cctc.202401421","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Interfaces of mixed oxide are often considered the primary catalytic sites, yet the functionalities of the surrounding environments are less understood. Composite oxides, particularly ZnO‐Cr2O3, show high activity and selectivity for syngas conversion, with ZnO dissociating H2 to hydrides and Cr2O3 activating CO. However, hydrides on ZnO cannot remain stable at temperatures above room temperature. Focusing on the puzzlingly high performance despite ZnO’s inability to stabilize active hydrides at reaction temperatures (300‐400 oC), we clarified the roles of each phase using models of Cr2O3/ZnO and ZnO/Cr2O3. Cr2O3 clusters on ZnO effectively stabilize and store hydrides, significantly enhancing syngas conversion compared to individual oxides or ZnO/Cr2O3. An acetate/ketene pathway on Cr2O3/ZnO was identified, driven by the unique role of Cr2O3 clusters in regulating local hydride and CO coverages, unlike other routes observed on ZnO/Cr2O3. These insights advance the understanding of the active structures and functionalities of mixed oxides in catalysis.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.