{"title":"The Impact of Federated Learning on Improving the IoT-Based Network in a Sustainable Smart Cities","authors":"Muhammad Ali Naeem, Yahui Meng, Sushank Chaudhary","doi":"10.3390/electronics13183653","DOIUrl":null,"url":null,"abstract":"The caching mechanism of federated learning in smart cities is vital for improving data handling and communication in IoT environments. Because it facilitates learning among separately connected devices, federated learning makes it possible to quickly update caching strategies in response to data usage without invading users’ privacy. Federated learning caching promotes improved dynamism, effectiveness, and data reachability for smart city services to function properly. In this paper, a new caching strategy for Named Data Networking (NDN) based on federated learning in smart cities’ IoT contexts is proposed and described. The proposed strategy seeks to apply a federated learning technique to improve content caching more effectively based on its popularity, thereby improving its performance on the network. The proposed strategy was compared to the benchmark in terms of the cache hit ratio, delay in content retrieval, and energy utilization. These benchmarks evidence that the suggested caching strategy performs far better than its counterparts in terms of cache hit rates, the time taken to fetch the content, and energy consumption. These enhancements result in smarter and more efficient smart city networks, a clear indication of how federated learning can revolutionize content caching in NDN-based IoT.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"58 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183653","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The caching mechanism of federated learning in smart cities is vital for improving data handling and communication in IoT environments. Because it facilitates learning among separately connected devices, federated learning makes it possible to quickly update caching strategies in response to data usage without invading users’ privacy. Federated learning caching promotes improved dynamism, effectiveness, and data reachability for smart city services to function properly. In this paper, a new caching strategy for Named Data Networking (NDN) based on federated learning in smart cities’ IoT contexts is proposed and described. The proposed strategy seeks to apply a federated learning technique to improve content caching more effectively based on its popularity, thereby improving its performance on the network. The proposed strategy was compared to the benchmark in terms of the cache hit ratio, delay in content retrieval, and energy utilization. These benchmarks evidence that the suggested caching strategy performs far better than its counterparts in terms of cache hit rates, the time taken to fetch the content, and energy consumption. These enhancements result in smarter and more efficient smart city networks, a clear indication of how federated learning can revolutionize content caching in NDN-based IoT.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.