Yan Hong, Xueqing Huang, Fang Li, Siqi Huang, Qibiao Weng, Diego Fraidenraich, Ioana Voiculescu
{"title":"Data-Driven Maturity Level Evaluation for Cardiomyocytes Derived from Human Pluripotent Stem Cells (Invited Paper).","authors":"Yan Hong, Xueqing Huang, Fang Li, Siqi Huang, Qibiao Weng, Diego Fraidenraich, Ioana Voiculescu","doi":"10.3390/electronics13244985","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease is a leading cause of death worldwide. The differentiation of human pluripotent stem cells (hPSCs) into functional cardiomyocytes offers significant potential for disease modeling and cell-based cardiac therapies. However, hPSC-derived cardiomyocytes (hPSC-CMs) remain largely immature, limiting their experimental and clinical applications. A critical challenge in current in vitro culture systems is the absence of standardized metrics to quantify maturity. This study presents a data-driven pipeline to quantify hPSC-CM maturity using gene expression data across various stages of cardiac development. We determined that culture time serves as a feasible proxy for maturity. To improve prediction accuracy, machine learning algorithms were employed to identify heart-related genes whose expression strongly correlates with culture time. Our results reduced the average discrepancy between predicted and observed culture time to 4.461 days and <i>CASQ2</i> (Calsequestrin 2), a gene involved in calcium ion storage and transport, was identified as the most critical cardiac gene associated with culture duration. This novel framework for maturity assessment moves beyond traditional qualitative methods, providing deeper insights into hPSC-CM maturation dynamics. It establishes a foundation for developing advanced lab-on-chip devices capable of real-time maturity monitoring and adaptive stimulus selection, paving the way for improved maturation strategies and broader experimental/clinical applications.</p>","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"13 24","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13244985","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disease is a leading cause of death worldwide. The differentiation of human pluripotent stem cells (hPSCs) into functional cardiomyocytes offers significant potential for disease modeling and cell-based cardiac therapies. However, hPSC-derived cardiomyocytes (hPSC-CMs) remain largely immature, limiting their experimental and clinical applications. A critical challenge in current in vitro culture systems is the absence of standardized metrics to quantify maturity. This study presents a data-driven pipeline to quantify hPSC-CM maturity using gene expression data across various stages of cardiac development. We determined that culture time serves as a feasible proxy for maturity. To improve prediction accuracy, machine learning algorithms were employed to identify heart-related genes whose expression strongly correlates with culture time. Our results reduced the average discrepancy between predicted and observed culture time to 4.461 days and CASQ2 (Calsequestrin 2), a gene involved in calcium ion storage and transport, was identified as the most critical cardiac gene associated with culture duration. This novel framework for maturity assessment moves beyond traditional qualitative methods, providing deeper insights into hPSC-CM maturation dynamics. It establishes a foundation for developing advanced lab-on-chip devices capable of real-time maturity monitoring and adaptive stimulus selection, paving the way for improved maturation strategies and broader experimental/clinical applications.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.