{"title":"Hardware-in-the-Loop Simulation of Flywheel Energy Storage Systems for Power Control in Wind Farms","authors":"Li Yang, Qiaoni Zhao","doi":"10.3390/electronics13183610","DOIUrl":null,"url":null,"abstract":"Flywheel energy storage systems (FESSs) are widely used for power regulation in wind farms as they can balance the wind farms’ output power and improve the wind power grid connection rate. Due to the complex environment of wind farms, it is costly and time-consuming to repeatedly debug the system on-site. To save research costs and shorten research cycles, a hardware-in-the-loop (HIL) testing system was built to provide a convenient testing environment for the research of FESSs on wind farms. The focus of this study is the construction of mathematical models in the HIL testing system. Firstly, a mathematical model of the FESS main circuit is established using a hierarchical method. Secondly, the principle of the permanent magnet synchronous motor (PMSM) is analyzed, and a nonlinear dq mathematical model of the PMSM is established by referring to the relationship among d-axis inductance, q-axis inductance, and permanent magnet flux change with respect to the motor’s current. Then, the power grid and wind farm test models are established. Finally, the established mathematical models are applied to the HIL testing system. The experimental results indicated that the HIL testing system can provide a convenient testing environment for the optimization of FESS control algorithms.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"53 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183610","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Flywheel energy storage systems (FESSs) are widely used for power regulation in wind farms as they can balance the wind farms’ output power and improve the wind power grid connection rate. Due to the complex environment of wind farms, it is costly and time-consuming to repeatedly debug the system on-site. To save research costs and shorten research cycles, a hardware-in-the-loop (HIL) testing system was built to provide a convenient testing environment for the research of FESSs on wind farms. The focus of this study is the construction of mathematical models in the HIL testing system. Firstly, a mathematical model of the FESS main circuit is established using a hierarchical method. Secondly, the principle of the permanent magnet synchronous motor (PMSM) is analyzed, and a nonlinear dq mathematical model of the PMSM is established by referring to the relationship among d-axis inductance, q-axis inductance, and permanent magnet flux change with respect to the motor’s current. Then, the power grid and wind farm test models are established. Finally, the established mathematical models are applied to the HIL testing system. The experimental results indicated that the HIL testing system can provide a convenient testing environment for the optimization of FESS control algorithms.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.