Yuhang Zhang, Ya Han, Fengjun Deng, Tingyu Zhao, Ze Liu, Dongxu Wang, Jinlong Luo, Yingjian Yu
{"title":"Enhancement of the performance of Ge–air batteries under high temperatures using conductive MOF-modified Ge anodes","authors":"Yuhang Zhang, Ya Han, Fengjun Deng, Tingyu Zhao, Ze Liu, Dongxu Wang, Jinlong Luo, Yingjian Yu","doi":"10.1002/cey2.580","DOIUrl":null,"url":null,"abstract":"Germanium (Ge)–air batteries have gained significant attention from researchers owing to their high power density and excellent safety. However, self-corrosion and surface passivation issues of Ge anode limit the development of high-performance Ge–air batteries. In this study, conductive metal-organic framework (MOF) Ni<sub>3</sub>(HITP)<sub>2</sub> material was synthesized by the gas–liquid interface approach. The Ni<sub>3</sub>(HITP)<sub>2</sub> material was deposited on the surface of the Ge anode to prevent corrosion and passivation reactions inside the battery. At 16°C, the discharge time of Ge anodes protected with MOFs was extended to 59 h at 195 μA cm<sup>−2</sup>, which was twice that of bare Ge anodes. The positive effect of MOFs on Ge–air batteries at high temperatures was observed for the first time. The Ge@Ni<sub>3</sub>(HITP)<sub>2</sub> anodes discharged over 600 h at 65.0 μA cm<sup>−2</sup>. The experimental results confirmed that the two-dimensional conductive MOF material effectively suppressed the self-corrosion and passivation on Ge anodes. This work provides new ideas for improving the performance of batteries in extreme environments and a new strategy for anode protection in air batteries.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"10 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.580","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Germanium (Ge)–air batteries have gained significant attention from researchers owing to their high power density and excellent safety. However, self-corrosion and surface passivation issues of Ge anode limit the development of high-performance Ge–air batteries. In this study, conductive metal-organic framework (MOF) Ni3(HITP)2 material was synthesized by the gas–liquid interface approach. The Ni3(HITP)2 material was deposited on the surface of the Ge anode to prevent corrosion and passivation reactions inside the battery. At 16°C, the discharge time of Ge anodes protected with MOFs was extended to 59 h at 195 μA cm−2, which was twice that of bare Ge anodes. The positive effect of MOFs on Ge–air batteries at high temperatures was observed for the first time. The Ge@Ni3(HITP)2 anodes discharged over 600 h at 65.0 μA cm−2. The experimental results confirmed that the two-dimensional conductive MOF material effectively suppressed the self-corrosion and passivation on Ge anodes. This work provides new ideas for improving the performance of batteries in extreme environments and a new strategy for anode protection in air batteries.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.