Facile Synthesis of Nanostructured Self‐Regenerative Superhydrophobic Coatings

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-09-05 DOI:10.1002/adem.202401279
Aaishwarika Raj Sharma, Harpreet Arora, Harpreet Singh Grewal
{"title":"Facile Synthesis of Nanostructured Self‐Regenerative Superhydrophobic Coatings","authors":"Aaishwarika Raj Sharma, Harpreet Arora, Harpreet Singh Grewal","doi":"10.1002/adem.202401279","DOIUrl":null,"url":null,"abstract":"The current study endeavors facile synthesis of robust nanostructured superhydrophobic coatings. Different feedstock materials (Cu, Al, Zn, SS316, NiCrCSiBFe) are coated using flame‐spraying at different spraying distances and constant pressure (1 bar). The surface modulation of flame‐sprayed coating is done using 1H,1H,2H,2H‐perfluorooctyltriethoxysilane (FOTES). The coating's topology alters from multi‐order hierarchal coral reef‐like morphology for Al and Zn to flattened topology for SS316 and NiCrCSiBFe. The size and density of nanostructures show significant transition with variation in feedstock and spraying distance. The analysis of particle‐laden flames shows characteristic variations in particle temperatures and velocity profiles. The morphological alternations are related to physiochemical characteristics, resulting in in‐situ particle vaporization and nucleation. Post silanization, Al and Zn coatings deposited at higher spraying distance show significant de‐wetting traits (<jats:italic>θ</jats:italic> &gt; 155°) with lowest contact angle hysteresis and sliding angle (&lt;5°). Coatings show extremely low adhesion of 2–4 μN with water droplets, which is considerably lower than lotus leaf (18 μN). Both coatings show extreme resilience in simulated rain, withstanding droplet impacts for more than 2 h without any loss of superhydrophobicity and outstanding abrasion resistance due to self‐regeneration behavior. The present study highlights a synthesis of a viable route for the development of robust superhydrophobic coatings for various applications.","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adem.202401279","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study endeavors facile synthesis of robust nanostructured superhydrophobic coatings. Different feedstock materials (Cu, Al, Zn, SS316, NiCrCSiBFe) are coated using flame‐spraying at different spraying distances and constant pressure (1 bar). The surface modulation of flame‐sprayed coating is done using 1H,1H,2H,2H‐perfluorooctyltriethoxysilane (FOTES). The coating's topology alters from multi‐order hierarchal coral reef‐like morphology for Al and Zn to flattened topology for SS316 and NiCrCSiBFe. The size and density of nanostructures show significant transition with variation in feedstock and spraying distance. The analysis of particle‐laden flames shows characteristic variations in particle temperatures and velocity profiles. The morphological alternations are related to physiochemical characteristics, resulting in in‐situ particle vaporization and nucleation. Post silanization, Al and Zn coatings deposited at higher spraying distance show significant de‐wetting traits (θ > 155°) with lowest contact angle hysteresis and sliding angle (<5°). Coatings show extremely low adhesion of 2–4 μN with water droplets, which is considerably lower than lotus leaf (18 μN). Both coatings show extreme resilience in simulated rain, withstanding droplet impacts for more than 2 h without any loss of superhydrophobicity and outstanding abrasion resistance due to self‐regeneration behavior. The present study highlights a synthesis of a viable route for the development of robust superhydrophobic coatings for various applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米结构自再生超疏水涂层的简易合成
目前的研究致力于轻松合成坚固的纳米结构超疏水涂层。不同的原料材料(铜、铝、锌、SS316、NiCrCSiBFe)在不同的喷射距离和恒定压力(1 巴)下使用火焰喷射进行涂层处理。火焰喷涂涂层的表面调制采用 1H,1H,2H,2H-全氟辛基三乙氧基硅烷(FOTES)。涂层的拓扑结构从 Al 和 Zn 的多阶分层珊瑚礁状形态到 SS316 和 NiCrCSiBFe 的扁平拓扑结构发生了变化。纳米结构的尺寸和密度随原料和喷涂距离的变化而发生显著变化。对充满颗粒的火焰进行的分析表明,颗粒温度和速度曲线都有特征性变化。形态变化与理化特性有关,导致颗粒原位汽化和成核。硅烷化后,以较高喷涂距离沉积的铝和锌涂层显示出显著的去湿特性(θ >155°),接触角滞后和滑动角(<5°)最小。涂层与水滴的附着力极低,仅为 2-4 μN,大大低于荷叶(18 μN)。这两种涂层在模拟雨水中都表现出极强的韧性,可承受水滴冲击超过 2 小时,而超疏水性丝毫无损,并且由于自再生行为而具有出色的耐磨性。本研究强调了为各种应用开发坚固的超疏水涂层的可行合成路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Combining Chemical Vapor Deposition and Spark Plasma Sintering for the Production of Tungsten Fiber-Reinforced Tungsten (Hybrid – Wf/W) Comparative Study of Room and Cryogenic Deformation Behavior of Additive Manufactured Ti–6Al–4V Alloy Ultrasonic Punching with Inkjet-Printed Dot Array for Fabrication of Perforated Metal Pattern as Transparent Heater Self-Healing Waterborne Polyurethanes as a Sustainable Gel Electrolyte for Flexible Electrochromic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1