Neuromorphic Heart Rate Monitors: Neural State Machines for Monotonic Change Detection

Alessio Carpegna, Chiara De Luca, Federico Emanuele Pozzi, Alessandro Savino, Stefano Di Carlo, Giacomo Indiveri, Elisa Donati
{"title":"Neuromorphic Heart Rate Monitors: Neural State Machines for Monotonic Change Detection","authors":"Alessio Carpegna, Chiara De Luca, Federico Emanuele Pozzi, Alessandro Savino, Stefano Di Carlo, Giacomo Indiveri, Elisa Donati","doi":"arxiv-2409.02618","DOIUrl":null,"url":null,"abstract":"Detecting monotonic changes in heart rate (HR) is crucial for early\nidentification of cardiac conditions and health management. This is\nparticularly important for dementia patients, where HR trends can signal stress\nor agitation. Developing wearable technologies that can perform always-on\nmonitoring of HRs is essential to effectively detect slow changes over extended\nperiods of time. However, designing compact electronic circuits that can\nmonitor and process bio-signals continuously, and that can operate in a\nlow-power regime to ensure long-lasting performance, is still an open\nchallenge. Neuromorphic technology offers an energy-efficient solution for\nreal-time health monitoring. We propose a neuromorphic implementation of a\nNeural State Machine (NSM) network to encode different health states and switch\nbetween them based on the input stimuli. Our focus is on detecting monotonic\nstate switches in electrocardiogram data to identify progressive HR increases.\nThis innovative approach promises significant advancements in continuous health\nmonitoring and management.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting monotonic changes in heart rate (HR) is crucial for early identification of cardiac conditions and health management. This is particularly important for dementia patients, where HR trends can signal stress or agitation. Developing wearable technologies that can perform always-on monitoring of HRs is essential to effectively detect slow changes over extended periods of time. However, designing compact electronic circuits that can monitor and process bio-signals continuously, and that can operate in a low-power regime to ensure long-lasting performance, is still an open challenge. Neuromorphic technology offers an energy-efficient solution for real-time health monitoring. We propose a neuromorphic implementation of a Neural State Machine (NSM) network to encode different health states and switch between them based on the input stimuli. Our focus is on detecting monotonic state switches in electrocardiogram data to identify progressive HR increases. This innovative approach promises significant advancements in continuous health monitoring and management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经形态心率监测器:单调变化检测神经状态机
检测心率(HR)的单调变化对于早期识别心脏状况和健康管理至关重要。这一点对痴呆症患者尤为重要,因为心率变化趋势可能预示着应激性躁动。开发可随时监测心率的可穿戴技术对于有效检测长时间的缓慢变化至关重要。然而,设计能够连续监测和处理生物信号,并能在低功耗环境中运行以确保持久性能的紧凑型电子电路仍然是一个巨大的挑战。神经形态技术为实时健康监测提供了一种节能解决方案。我们提出了一种神经形态的神经状态机(NSM)网络实现方法,用于编码不同的健康状态,并根据输入刺激在它们之间进行切换。我们的重点是检测心电图数据中的单调状态切换,以识别渐进式心率增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1