Distributed photovoltaic supportability consumption method considering energy storage configuration mode and random events

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Research Pub Date : 2024-08-28 DOI:10.3389/fenrg.2024.1415175
Yaoqin Cui, Guobin Yang, Yan Yue, Yibo Zhang, Tianlong Zhao, Xiaofei Chang
{"title":"Distributed photovoltaic supportability consumption method considering energy storage configuration mode and random events","authors":"Yaoqin Cui, Guobin Yang, Yan Yue, Yibo Zhang, Tianlong Zhao, Xiaofei Chang","doi":"10.3389/fenrg.2024.1415175","DOIUrl":null,"url":null,"abstract":"In order to improve the control capability of distributed photovoltaic support, a distributed photovoltaic support consumption method based on energy storage configuration mode and random events is proposed. A networked and constrained parameter analysis model for distributed photovoltaic power supply control was constructed. Based on the direct flexible mode of optical storage, an AC/DC voltage level control model for distributed solar power supply control was constructed. In the operation mode of DC hybrid distribution network, the demand response tracking identification method was used to analyze the uncertain characteristic parameters of distributed solar power supply load, and combined with the planned energy storage capacity parameters, the distributed solar power supply load and photovoltaic output were estimated. By configuring the optimal energy storage capacity, adjusting the power distribution of the microgrid, and integrating the analysis of uncertain factors and random events in the energy storage configuration mode, the design of distributed photovoltaic support consumption has been achieved. The experimental results show that the distributed photovoltaic absorption control using this method has lower load requirements, can effectively reduce the exchange power of the interconnection line, and improve the configuration scale, system reliability, and economy of the photovoltaic energy storage system.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1415175","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to improve the control capability of distributed photovoltaic support, a distributed photovoltaic support consumption method based on energy storage configuration mode and random events is proposed. A networked and constrained parameter analysis model for distributed photovoltaic power supply control was constructed. Based on the direct flexible mode of optical storage, an AC/DC voltage level control model for distributed solar power supply control was constructed. In the operation mode of DC hybrid distribution network, the demand response tracking identification method was used to analyze the uncertain characteristic parameters of distributed solar power supply load, and combined with the planned energy storage capacity parameters, the distributed solar power supply load and photovoltaic output were estimated. By configuring the optimal energy storage capacity, adjusting the power distribution of the microgrid, and integrating the analysis of uncertain factors and random events in the energy storage configuration mode, the design of distributed photovoltaic support consumption has been achieved. The experimental results show that the distributed photovoltaic absorption control using this method has lower load requirements, can effectively reduce the exchange power of the interconnection line, and improve the configuration scale, system reliability, and economy of the photovoltaic energy storage system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑储能配置模式和随机事件的分布式光伏发电可支持性消耗方法
为了提高分布式光伏电源的控制能力,提出了一种基于储能配置模式和随机事件的分布式光伏电源消耗方法。构建了分布式光伏电源控制的网络化约束参数分析模型。基于光储直接柔性模式,构建了分布式光伏电源控制的交直流电压等级控制模型。在直流混合配电网运行模式下,利用需求响应跟踪识别方法分析了分布式太阳能供电负荷的不确定性特征参数,并结合规划的储能容量参数,估算了分布式太阳能供电负荷和光伏输出功率。通过配置最优储能容量,调整微电网功率分布,并综合分析储能配置模式中的不确定因素和随机事件,实现了分布式光伏辅助用电的设计。实验结果表明,采用该方法的分布式光伏消纳控制对负荷要求较低,能有效降低互联线路的交换功率,提高光伏储能系统的配置规模、系统可靠性和经济性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy Research
Frontiers in Energy Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.90
自引率
11.80%
发文量
1727
审稿时长
12 weeks
期刊介绍: Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria
期刊最新文献
Grid-integrated solutions for sustainable EV charging: a comparative study of renewable energy and battery storage systems Research on the impact of digitalization on energy companies’ green transition: new insights from China Multi-objective-based economic and emission dispatch with integration of wind energy sources using different optimization algorithms Demand-side management scenario analysis for the energy-efficient future of Pakistan: Bridging the gap between market interests and national priorities Modeling and scheduling of utility-scale energy storage toward high-share renewable coordination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1