{"title":"Evacuated Tube Solar Collector-Based Drying System: Analytical Modeling, Influencing Factors, and Recent Progress in Drying of Agri-Commodities","authors":"Dhiraj Kumar Yadav, Santanu Malakar, Vinkel Kumar Arora, Narender Sinhmar","doi":"10.1007/s12393-024-09382-6","DOIUrl":null,"url":null,"abstract":"<p>Evacuated tube solar collector (ETSC) has gained significant attention due to its high thermal efficiency and ability to harness solar energy more effectively as compared to flat plate solar collector. The present review analyzed the in-depth mechanism of analytical modeling of ETSC, different factors influencing the performance, and applications in drying of Agri-commodities. Evacuated tubes with and without heat pipes are used for air heating purposes. ETSC with tracking and non-tracking, selective coating techniques, and for reducing heat loss during drying operations are reported. The system performance is greatly influenced by the ETSC design, absorber coating, heat transfer fluid, mass flow rate of working fluid, inclination or tilt angle, collector size, and distance between tubes. Moreover, Computational fluid dynamic (CFD) simulations of the various ETSC-based drying systems were compiled to investigate their flow patterns, heat transfer characteristics, and overall system performance. This literature inherently provides the way for the development of evacuated tube-based innovative and sustainable solar dryers in small and industrial scale.</p>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s12393-024-09382-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evacuated tube solar collector (ETSC) has gained significant attention due to its high thermal efficiency and ability to harness solar energy more effectively as compared to flat plate solar collector. The present review analyzed the in-depth mechanism of analytical modeling of ETSC, different factors influencing the performance, and applications in drying of Agri-commodities. Evacuated tubes with and without heat pipes are used for air heating purposes. ETSC with tracking and non-tracking, selective coating techniques, and for reducing heat loss during drying operations are reported. The system performance is greatly influenced by the ETSC design, absorber coating, heat transfer fluid, mass flow rate of working fluid, inclination or tilt angle, collector size, and distance between tubes. Moreover, Computational fluid dynamic (CFD) simulations of the various ETSC-based drying systems were compiled to investigate their flow patterns, heat transfer characteristics, and overall system performance. This literature inherently provides the way for the development of evacuated tube-based innovative and sustainable solar dryers in small and industrial scale.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.