Machine Learning Driven Optimization for High Precision Cellular Droplet Bioprinting

Jaemyung Shin, Minseok Kang, Kinam Hyun, Zhangkang Li, Hitendra Kumar, Kangsoo Kim, Simon S. Park, Keekyoung Kim
{"title":"Machine Learning Driven Optimization for High Precision Cellular Droplet Bioprinting","authors":"Jaemyung Shin, Minseok Kang, Kinam Hyun, Zhangkang Li, Hitendra Kumar, Kangsoo Kim, Simon S. Park, Keekyoung Kim","doi":"10.1101/2024.09.04.611131","DOIUrl":null,"url":null,"abstract":"Controlled volume microliter cell-laden droplet bioprinting is important for precise biologics deposition, reliably replicating 3D microtissue environments for building cell aggregates or organoids. To achieve this, we propose an innovative machine-learning approach to predict cell-laden droplet volumes according to input parameters. We developed a novel bioprinting platform capable of collecting high-throughput droplet images and generating an extensive dataset for training machine learning and deep learning algorithms. Our research compared the performance of three machine learning and two deep learning algorithms that predict droplet volume based on numerous bioprinting parameters. By adjusting bioink viscosity, nozzle size, printing time, printing pressure, and cell concentration as input parameters, we precisely could control droplet sizes, ranging from 0.1 to 50 microliter in volume. We utilized a hydrogel precursor composed of 5% gelatin methacrylate and a mixture of 0.5% and 1% alginate, respectively. Additionally, we optimized the cell bioprinting process using green fluorescent protein-tagged 3T3 fibroblast cells. These models demonstrated superior predictive accuracy and revealed the interrelationships among parameters while taking minimal time for training and testing. This method promises to advance the mass production of organoids and microtissues with precise volume control for various biomedical applications.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Controlled volume microliter cell-laden droplet bioprinting is important for precise biologics deposition, reliably replicating 3D microtissue environments for building cell aggregates or organoids. To achieve this, we propose an innovative machine-learning approach to predict cell-laden droplet volumes according to input parameters. We developed a novel bioprinting platform capable of collecting high-throughput droplet images and generating an extensive dataset for training machine learning and deep learning algorithms. Our research compared the performance of three machine learning and two deep learning algorithms that predict droplet volume based on numerous bioprinting parameters. By adjusting bioink viscosity, nozzle size, printing time, printing pressure, and cell concentration as input parameters, we precisely could control droplet sizes, ranging from 0.1 to 50 microliter in volume. We utilized a hydrogel precursor composed of 5% gelatin methacrylate and a mixture of 0.5% and 1% alginate, respectively. Additionally, we optimized the cell bioprinting process using green fluorescent protein-tagged 3T3 fibroblast cells. These models demonstrated superior predictive accuracy and revealed the interrelationships among parameters while taking minimal time for training and testing. This method promises to advance the mass production of organoids and microtissues with precise volume control for various biomedical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习驱动的高精度细胞液滴生物打印优化技术
可控体积的微升细胞液滴生物打印对于精确的生物制剂沉积、可靠地复制三维微组织环境以构建细胞聚集体或器官组织非常重要。为此,我们提出了一种创新的机器学习方法,可根据输入参数预测细胞液滴体积。我们开发了一种新型生物打印平台,能够收集高通量液滴图像并生成大量数据集,用于训练机器学习和深度学习算法。我们的研究比较了三种机器学习算法和两种深度学习算法的性能,这些算法可根据众多生物打印参数预测液滴体积。通过调整生物墨水粘度、喷嘴大小、打印时间、打印压力和细胞浓度等输入参数,我们可以精确控制液滴大小,体积范围从 0.1 到 50 微升不等。我们使用的水凝胶前体分别由 5% 的甲基丙烯酸明胶和 0.5% 和 1% 的海藻酸混合物组成。此外,我们还利用绿色荧光蛋白标记的 3T3 成纤维细胞优化了细胞生物打印过程。这些模型显示了卓越的预测准确性,并揭示了参数之间的相互关系,同时将训练和测试时间降到了最低。这种方法有望推进具有精确体积控制的有机体和微组织的大规模生产,用于各种生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement PiggyBac mediated transgenesis and CRISPR/Cas9 knockout in the greater waxmoth, Galleria mellonella A microinjection protocol for the greater waxworm moth, Galleria mellonella Engineered Receptors for Soluble Cell-to-Cell Communication Synthesis and mechanical characterization of polyacrylamide (PAAm) hydrogels with different stiffnesses for large-batch cell culture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1