T cell correction pipeline for Inborn Errors of Immunity

Katariina Mamia, Solrun Kolbeinsdottir, Zhuokun Li, Kornel Labun, Anna Komisarczuk, Salla Keskitalo, Ganna Reint, Frida Hosoien Haugen, Britt Olaug Lindestad, Thea Johanne Gjerdingen, Antti Tuhkala, Carolina Wieczorek Ervik, Pavel Kopcil, Nail Fatkhutdinov, Monika Szymanska, Eero Tolo, Virpi Glumoff, Janna Saarela, Trond Melbye Michelsen, Camilla Schalin-Jantti, Johanna Olweus, Eira Leinonen, Markku Varjosalo, Eivind Valen, Timo Hautala, Martin Enge, Timi Martelius, Shiva Dahal-Koirala, Emma Haapaniemi
{"title":"T cell correction pipeline for Inborn Errors of Immunity","authors":"Katariina Mamia, Solrun Kolbeinsdottir, Zhuokun Li, Kornel Labun, Anna Komisarczuk, Salla Keskitalo, Ganna Reint, Frida Hosoien Haugen, Britt Olaug Lindestad, Thea Johanne Gjerdingen, Antti Tuhkala, Carolina Wieczorek Ervik, Pavel Kopcil, Nail Fatkhutdinov, Monika Szymanska, Eero Tolo, Virpi Glumoff, Janna Saarela, Trond Melbye Michelsen, Camilla Schalin-Jantti, Johanna Olweus, Eira Leinonen, Markku Varjosalo, Eivind Valen, Timo Hautala, Martin Enge, Timi Martelius, Shiva Dahal-Koirala, Emma Haapaniemi","doi":"10.1101/2024.09.03.610811","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas9 gene editing technology is a promising tool for correcting pathogenic variants for autologous cell therapies for Inborn Errors of Immunity (IEI). The present IEI correction strategies mainly focus on the knock-in of therapeutic cDNAs, or knockout of the disease-causing gene when feasible. These strategies address many single-gene defects but may disrupt gene expression and require significant optimization for each newly discovered IEI-causing gene, highlighting the need for complementary platforms that can precisely correct diverse pathogenic variants. Here, we present a safe and efficient T cell single nucleotide variant (SNV) correction pipeline based on homology-directed repair (HDR), suitable for diverse monogenic mutations. By using founder mutations of Deficiency of ADA2 (DADA2), Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) and Cartilage Hair Hypoplasia (CHH) as IEI models, we show that our pipeline can achieve up to 80% bi-allelic editing, with resultant functional correction of the disease phenotype in patient T cells. We do not find detectable pre-malignant off-target effects or karyotypic, transcriptomic or proteomic aberrations upon profiling patient T cells with GUIDE-seq, single cell RNA sequencing, PacBio based long-read whole genome sequencing, and high-throughput proteomics. This study demonstrates that HDR-based SNV editing is a safe and effective option for IEI T cell correction and that it could be developed to an autologous T cell therapy, as the presented protocol is scalable for a GMP-compatible workflow. This study is a step towards the development of gene correction platform that targets a broad number of monogenic mutations.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.610811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR/Cas9 gene editing technology is a promising tool for correcting pathogenic variants for autologous cell therapies for Inborn Errors of Immunity (IEI). The present IEI correction strategies mainly focus on the knock-in of therapeutic cDNAs, or knockout of the disease-causing gene when feasible. These strategies address many single-gene defects but may disrupt gene expression and require significant optimization for each newly discovered IEI-causing gene, highlighting the need for complementary platforms that can precisely correct diverse pathogenic variants. Here, we present a safe and efficient T cell single nucleotide variant (SNV) correction pipeline based on homology-directed repair (HDR), suitable for diverse monogenic mutations. By using founder mutations of Deficiency of ADA2 (DADA2), Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) and Cartilage Hair Hypoplasia (CHH) as IEI models, we show that our pipeline can achieve up to 80% bi-allelic editing, with resultant functional correction of the disease phenotype in patient T cells. We do not find detectable pre-malignant off-target effects or karyotypic, transcriptomic or proteomic aberrations upon profiling patient T cells with GUIDE-seq, single cell RNA sequencing, PacBio based long-read whole genome sequencing, and high-throughput proteomics. This study demonstrates that HDR-based SNV editing is a safe and effective option for IEI T cell correction and that it could be developed to an autologous T cell therapy, as the presented protocol is scalable for a GMP-compatible workflow. This study is a step towards the development of gene correction platform that targets a broad number of monogenic mutations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先天性免疫错误的 T 细胞校正管道
CRISPR/Cas9基因编辑技术是一种很有前途的工具,可用于纠正先天性免疫错误(IEI)自体细胞疗法的致病变异体。目前的先天性免疫错误(IEI)纠正策略主要集中在敲入治疗性 cDNA,或在可行的情况下敲除致病基因。这些策略可以解决许多单基因缺陷,但可能会破坏基因表达,而且需要对每个新发现的 IEI 致病基因进行大量优化,这就凸显了对能精确纠正各种致病变体的互补平台的需求。在这里,我们提出了一种基于同源定向修复(HDR)的安全高效的 T 细胞单核苷酸变异(SNV)校正管道,适用于各种单基因突变。通过使用 ADA2 缺乏症 (DADA2)、自身免疫性多内分泌病-念珠菌病-外胚层营养不良症 (APECED) 和软骨毛发发育不全症 (CHH) 的创始突变作为 IEI 模型,我们展示了我们的管道可以实现高达 80% 的双等位基因编辑,从而对患者 T 细胞中的疾病表型进行功能校正。在使用 GUIDE-seq、单细胞 RNA 测序、基于 PacBio 的长读程全基因组测序和高通量蛋白质组学分析患者 T 细胞时,我们没有发现可检测到的预恶性脱靶效应或核型、转录组或蛋白质组畸变。这项研究表明,基于 HDR 的 SNV 编辑是 IEI T 细胞校正的一种安全有效的选择,而且它可以发展成一种自体 T 细胞疗法,因为所提出的方案可以扩展到与 GMP 兼容的工作流程。这项研究为开发针对大量单基因突变的基因校正平台迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement PiggyBac mediated transgenesis and CRISPR/Cas9 knockout in the greater waxmoth, Galleria mellonella A microinjection protocol for the greater waxworm moth, Galleria mellonella Engineered Receptors for Soluble Cell-to-Cell Communication Synthesis and mechanical characterization of polyacrylamide (PAAm) hydrogels with different stiffnesses for large-batch cell culture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1