Deep learning model for predicting the spatial distribution of binding energy from atomic configurations

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, APPLIED Japanese Journal of Applied Physics Pub Date : 2024-09-04 DOI:10.35848/1347-4065/ad6e8e
Seiki Saito, Shingo Sato, Hiroaki Nakamura, Chako Takahashi, Keiji Sawada, Kazuo Hoshino, Masahiro Kobayashi, Masahiro Hasuo
{"title":"Deep learning model for predicting the spatial distribution of binding energy from atomic configurations","authors":"Seiki Saito, Shingo Sato, Hiroaki Nakamura, Chako Takahashi, Keiji Sawada, Kazuo Hoshino, Masahiro Kobayashi, Masahiro Hasuo","doi":"10.35848/1347-4065/ad6e8e","DOIUrl":null,"url":null,"abstract":"Understanding plasma-material interaction is crucial for achieving steady-state operation of magnetic confinement fusion devices. Kinetic Monte Carlo (kMC) simulation is a powerful tool for investigating the motion of atoms in the plasma facing materials under the influence of this interaction. To predict trapping sites and migration energies necessary for kMC simulations, we developed a deep learning model based on pix2pix for predicting the spatial distribution of binding energy. Results show that the model can reproduce spatial distributions similar to the true values. However, larger errors occur in regions with steep value gradients.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad6e8e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding plasma-material interaction is crucial for achieving steady-state operation of magnetic confinement fusion devices. Kinetic Monte Carlo (kMC) simulation is a powerful tool for investigating the motion of atoms in the plasma facing materials under the influence of this interaction. To predict trapping sites and migration energies necessary for kMC simulations, we developed a deep learning model based on pix2pix for predicting the spatial distribution of binding energy. Results show that the model can reproduce spatial distributions similar to the true values. However, larger errors occur in regions with steep value gradients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从原子构型预测结合能空间分布的深度学习模型
了解等离子体与材料之间的相互作用对于实现磁约束聚变装置的稳态运行至关重要。动力学蒙特卡罗(kMC)模拟是研究在这种相互作用影响下等离子体中原子面对材料运动的有力工具。为了预测 kMC 模拟所需的捕获点和迁移能,我们开发了一个基于 pix2pix 的深度学习模型,用于预测结合能的空间分布。结果表明,该模型可以再现与真实值相似的空间分布。然而,在具有陡峭数值梯度的区域会出现较大误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Japanese Journal of Applied Physics
Japanese Journal of Applied Physics 物理-物理:应用
CiteScore
3.00
自引率
26.70%
发文量
818
审稿时长
3.5 months
期刊介绍: The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP). JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields: • Semiconductors, dielectrics, and organic materials • Photonics, quantum electronics, optics, and spectroscopy • Spintronics, superconductivity, and strongly correlated materials • Device physics including quantum information processing • Physics-based circuits and systems • Nanoscale science and technology • Crystal growth, surfaces, interfaces, thin films, and bulk materials • Plasmas, applied atomic and molecular physics, and applied nuclear physics • Device processing, fabrication and measurement technologies, and instrumentation • Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS
期刊最新文献
Thick piezoelectric films by aerosol deposition at room temperature: corona poling and force sensing Research on optical properties of Eu3+ doped bismuth silicate crystals based on first principles Effect of gas injection pattern on magnetically expanding rf plasma source Rotary pump using underwater electrical discharge Formation conditions of the tungsten porous thin film with pulsed laser deposition under various gas atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1