Quoc-Phong Pham, Le Ngoc Quynh Hoa, Muhamad Amirul Haq, Le Nam Quoc Huy
{"title":"Investigation of the impact of environmental conditions on the mechanical properties of thin-film copper wafers","authors":"Quoc-Phong Pham, Le Ngoc Quynh Hoa, Muhamad Amirul Haq, Le Nam Quoc Huy","doi":"10.35848/1347-4065/ad6bd9","DOIUrl":null,"url":null,"abstract":"Thin-film copper offers excellent film texture for multilevel interconnections in integrated circuit fabrication due to its superior resistance to electromigration and high electrical conductivity. To perform a chemical mechanical planarization process during semiconductor fabrication of copper, it is necessary to have a thorough understanding of the nanomechanical properties of thin-film copper. In this study, thin-film copper and reacted passivation layers on silicon substrate wafers are investigated for their nanomechanical properties under various environmental conditions. The results of this study indicate that thin-film copper passivation layers have different properties in deionized (DI) water and polishing slurry environments compared to thin-film copper exposed to ambient air. Interestingly, variations in temperature within wet environments do not significantly affect the properties of thin-film copper wafers; but changes in properties are largely driven by chemical processes. The insights gained from this study emphasize the significance of considering both the passivation layers and wet environments in semiconductor fabrication processes, which contributes to the advancement of copper-based interconnect materials and optimization of the chemical mechanical planarization process in semiconductor manufacturing.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"61 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad6bd9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Thin-film copper offers excellent film texture for multilevel interconnections in integrated circuit fabrication due to its superior resistance to electromigration and high electrical conductivity. To perform a chemical mechanical planarization process during semiconductor fabrication of copper, it is necessary to have a thorough understanding of the nanomechanical properties of thin-film copper. In this study, thin-film copper and reacted passivation layers on silicon substrate wafers are investigated for their nanomechanical properties under various environmental conditions. The results of this study indicate that thin-film copper passivation layers have different properties in deionized (DI) water and polishing slurry environments compared to thin-film copper exposed to ambient air. Interestingly, variations in temperature within wet environments do not significantly affect the properties of thin-film copper wafers; but changes in properties are largely driven by chemical processes. The insights gained from this study emphasize the significance of considering both the passivation layers and wet environments in semiconductor fabrication processes, which contributes to the advancement of copper-based interconnect materials and optimization of the chemical mechanical planarization process in semiconductor manufacturing.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS