Jeail Kim, Hwihyeon Kang, Ugaitz Elu, Dasol Kim, Florian Haberstroh, Themistoklis Sidiropoulos, Tobias Steinle, Matthias Baudisch, Lisa Ortmann, Alexandra S. Landsman, Jens Biegert, Alexis Chacón, Dong Eon Kim
{"title":"Tunable UV ∼ IR frequency comb generation via high-order sideband generation","authors":"Jeail Kim, Hwihyeon Kang, Ugaitz Elu, Dasol Kim, Florian Haberstroh, Themistoklis Sidiropoulos, Tobias Steinle, Matthias Baudisch, Lisa Ortmann, Alexandra S. Landsman, Jens Biegert, Alexis Chacón, Dong Eon Kim","doi":"10.35848/1347-4065/ad68f1","DOIUrl":null,"url":null,"abstract":"We propose the generation of a widely tunable UV-to-IR frequency comb by high-order sideband generation (HSB) spectrum emitted from semiconductors. In our theoretical simulations, we demonstrate the high-order sideband signals of two series (2<italic toggle=\"yes\">m</italic>\n<inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{\\Omega }}}_{\\mathrm{seed}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> + (2<italic toggle=\"yes\">n</italic> + 1)<inline-formula>\n<tex-math>\n<?CDATA ${\\omega }_{\\mathrm{driver}},$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi>ω</mml:mi><mml:mi>driver</mml:mi></mml:msub><mml:mo>,</mml:mo></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and (2<italic toggle=\"yes\">m</italic> + 1)<inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{\\Omega }}}_{\\mathrm{seed}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> + 2<inline-formula>\n<tex-math>\n<?CDATA $n{\\omega }_{\\mathrm{driver}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>n</mml:mi><mml:msub><mml:mi>ω</mml:mi><mml:mi>driver</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>), where <italic toggle=\"yes\">m</italic> and <italic toggle=\"yes\">n</italic> are integers of a seed pulse and a driver laser frequency, respectively. The simulations also reveal the intensity of HSB scale with the driver laser power, both perturbatively and non-perturbatively. We find that the harmonic position and spacing of the high-order sideband emission can be controlled by varying the seed pulse and driver photon energies. In the experiment, we applied a visible (<inline-formula>\n<tex-math>\n<?CDATA ${\\rm{\\hslash }}{{\\rm{\\Omega }}}_{\\mathrm{seed}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"normal\">ℏ</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> = 3.1 eV, ∼400 nm) seed pulse and mid-infrared (MIR, <inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{\\hslash }}\\omega }_{\\mathrm{driver}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">ℏ</mml:mi><mml:mi>ω</mml:mi></mml:mrow><mml:mi>driver</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> = 0.4 eV, 3.1 μm) driver pulses to ZnSe target. Our experimental observations confirmed the UV (4.7 eV, 263 nm and 3.9 eV, 317 nm) HSB generation.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"70 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad68f1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose the generation of a widely tunable UV-to-IR frequency comb by high-order sideband generation (HSB) spectrum emitted from semiconductors. In our theoretical simulations, we demonstrate the high-order sideband signals of two series (2mΩseed + (2n + 1)ωdriver, and (2m + 1)Ωseed + 2nωdriver), where m and n are integers of a seed pulse and a driver laser frequency, respectively. The simulations also reveal the intensity of HSB scale with the driver laser power, both perturbatively and non-perturbatively. We find that the harmonic position and spacing of the high-order sideband emission can be controlled by varying the seed pulse and driver photon energies. In the experiment, we applied a visible (ℏΩseed = 3.1 eV, ∼400 nm) seed pulse and mid-infrared (MIR, ℏωdriver = 0.4 eV, 3.1 μm) driver pulses to ZnSe target. Our experimental observations confirmed the UV (4.7 eV, 263 nm and 3.9 eV, 317 nm) HSB generation.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS