Lihua Dai, Ben Wang, Xuemin Cheng, Qin Wang, Xinsen Ni
{"title":"The application of deep learning technology in integrated circuit design","authors":"Lihua Dai, Ben Wang, Xuemin Cheng, Qin Wang, Xinsen Ni","doi":"10.1186/s42162-024-00380-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the intricate challenge of circuit layout optimization central to integrated circuit (IC) design, where the primary goals involve attaining an optimal balance among power consumption, performance metrics, and chip area (collectively known as PPA optimization). The complexity of this task, evolving into a multidimensional problem under multiple constraints, necessitates the exploration of advanced methodologies. In response to these challenges, our research introduces deep learning technology as an innovative strategy to revolutionize circuit layout optimization. Specifically, we employ Convolutional Neural Networks (CNNs) in developing an optimized layout strategy, a performance prediction model, and a system for fault detection and real-time monitoring. These methodologies leverage the capacity of deep learning models to learn from high-dimensional data representations and handle multiple constraints effectively. Extensive case studies and rigorous experimental validations demonstrate the efficacy of our proposed deep learning-driven approaches. The results highlight significant enhancements in optimization efficiency, with an average power consumption reduction of 120% and latency decrease by 1.5%. Furthermore, the predictive capabilities are markedly improved, evidenced by a reduction in the average absolute error for power predictions to 3%. Comparative analyses conclusively illustrate the superiority of deep learning methodologies over conventional techniques across several dimensions. Our findings underscore the potential of deep learning in achieving higher accuracy in predictions, demonstrating stronger generalization abilities, facilitating superior design quality, and ultimately enhancing user satisfaction. These advancements not only validate the applicability of deep learning in IC design optimization but also pave the way for future advancements in addressing the multidimensional challenges inherent to circuit layout optimization.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00380-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00380-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the intricate challenge of circuit layout optimization central to integrated circuit (IC) design, where the primary goals involve attaining an optimal balance among power consumption, performance metrics, and chip area (collectively known as PPA optimization). The complexity of this task, evolving into a multidimensional problem under multiple constraints, necessitates the exploration of advanced methodologies. In response to these challenges, our research introduces deep learning technology as an innovative strategy to revolutionize circuit layout optimization. Specifically, we employ Convolutional Neural Networks (CNNs) in developing an optimized layout strategy, a performance prediction model, and a system for fault detection and real-time monitoring. These methodologies leverage the capacity of deep learning models to learn from high-dimensional data representations and handle multiple constraints effectively. Extensive case studies and rigorous experimental validations demonstrate the efficacy of our proposed deep learning-driven approaches. The results highlight significant enhancements in optimization efficiency, with an average power consumption reduction of 120% and latency decrease by 1.5%. Furthermore, the predictive capabilities are markedly improved, evidenced by a reduction in the average absolute error for power predictions to 3%. Comparative analyses conclusively illustrate the superiority of deep learning methodologies over conventional techniques across several dimensions. Our findings underscore the potential of deep learning in achieving higher accuracy in predictions, demonstrating stronger generalization abilities, facilitating superior design quality, and ultimately enhancing user satisfaction. These advancements not only validate the applicability of deep learning in IC design optimization but also pave the way for future advancements in addressing the multidimensional challenges inherent to circuit layout optimization.