{"title":"Mechanical properties of polycaprolactone bone scaffolds reinforced with carbon nanotube-modified tricalcium phosphate","authors":"Wenjun Yang, Chenchen Li, Lu Han","doi":"10.1007/s42823-024-00788-0","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional printed polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) scaffolds reinforced with carbon nanotubes (CNTs) were fabricated and characterized for bone tissue engineering applications. The incorporation of CNTs significantly enhanced the mechanical properties, with the aligned PCL/β-TCP/CNT scaffold (1 wt% CNTs) exhibiting a 125% and 123% increase in compressive modulus (180.3 ± 10.1 MPa) and strength (7.8 ± 0.6 MPa), respectively, compared to the PCL/β-TCP scaffold. The β-glycerol phosphate (BGP)-modified PCL/β-TCP/CNT scaffold showed similar mechanical properties to the aligned scaffold. All scaffolds maintained high porosity (> 70%) and a wide pore size distribution (50–500 μm). The scaffolds demonstrated excellent biocompatibility, with hemolysis rates below 5% and high cell viability. The aligned PCL/β-TCP/CNT scaffold promoted the highest rat adipose-derived stem cell proliferation, while the BGP-modified scaffold enhanced human dental pulp stem cell proliferation and mineralization.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"4 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00788-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional printed polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) scaffolds reinforced with carbon nanotubes (CNTs) were fabricated and characterized for bone tissue engineering applications. The incorporation of CNTs significantly enhanced the mechanical properties, with the aligned PCL/β-TCP/CNT scaffold (1 wt% CNTs) exhibiting a 125% and 123% increase in compressive modulus (180.3 ± 10.1 MPa) and strength (7.8 ± 0.6 MPa), respectively, compared to the PCL/β-TCP scaffold. The β-glycerol phosphate (BGP)-modified PCL/β-TCP/CNT scaffold showed similar mechanical properties to the aligned scaffold. All scaffolds maintained high porosity (> 70%) and a wide pore size distribution (50–500 μm). The scaffolds demonstrated excellent biocompatibility, with hemolysis rates below 5% and high cell viability. The aligned PCL/β-TCP/CNT scaffold promoted the highest rat adipose-derived stem cell proliferation, while the BGP-modified scaffold enhanced human dental pulp stem cell proliferation and mineralization.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.