Frontal polymerization for UV‐ and thermally initiated EPON 826 resin

IF 3.2 4区 工程技术 Q2 ENGINEERING, CHEMICAL Polymer Engineering and Science Pub Date : 2024-08-18 DOI:10.1002/pen.26879
Gabrielle Esposito, Gyaneshwar Tandon, Andrew Abbott, Dennis Butcher, Hilmar Koerner
{"title":"Frontal polymerization for UV‐ and thermally initiated EPON 826 resin","authors":"Gabrielle Esposito, Gyaneshwar Tandon, Andrew Abbott, Dennis Butcher, Hilmar Koerner","doi":"10.1002/pen.26879","DOIUrl":null,"url":null,"abstract":"<jats:label/>Frontal polymerization has great potential in complementing additive manufacturing processes such as direct ink writing as a continuous cure synchronized to the printing speed can overcome issues such as sagging. To study the incorporation of frontal polymerization into a potential printing process, a frontally polymerizable DGEBA epoxy resin has been developed for both UV and thermal initiation. Through frontal polymerization alone, full conversion is observed with a starting glass transition of 150°C for both initiation methods. Resulting thermal behavior is shown to have little dependence on either initiation irradiance or temperature utilized and much greater dependence on initiator concentration in the resin. Mechanical behavior is maximized by varying initiator concentration and cure conditions achieving tensile stress of 75 MPa and K<jats:sub>1C</jats:sub> of 1.2 MPa‐m<jats:sup>1/2</jats:sup>. Shelf stability of the resin proves promising with no viscosity change after 12 weeks of room temperature storage. Future studies will concern adapting the resin for both direct ink writing and continuous fiber additive manufacturing applications.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Frontal polymerization of EPON 826 using RICFP</jats:list-item> <jats:list-item>Utilized a tetrakis borate containing diaryliodonium cationic initiator</jats:list-item> <jats:list-item>Stable and polymerizable after 12 weeks</jats:list-item> <jats:list-item>Resin printed and frontally cured using UV initiation</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"4 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26879","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Frontal polymerization has great potential in complementing additive manufacturing processes such as direct ink writing as a continuous cure synchronized to the printing speed can overcome issues such as sagging. To study the incorporation of frontal polymerization into a potential printing process, a frontally polymerizable DGEBA epoxy resin has been developed for both UV and thermal initiation. Through frontal polymerization alone, full conversion is observed with a starting glass transition of 150°C for both initiation methods. Resulting thermal behavior is shown to have little dependence on either initiation irradiance or temperature utilized and much greater dependence on initiator concentration in the resin. Mechanical behavior is maximized by varying initiator concentration and cure conditions achieving tensile stress of 75 MPa and K1C of 1.2 MPa‐m1/2. Shelf stability of the resin proves promising with no viscosity change after 12 weeks of room temperature storage. Future studies will concern adapting the resin for both direct ink writing and continuous fiber additive manufacturing applications.Highlights Frontal polymerization of EPON 826 using RICFP Utilized a tetrakis borate containing diaryliodonium cationic initiator Stable and polymerizable after 12 weeks Resin printed and frontally cured using UV initiation
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于紫外线和热引发 EPON 826 树脂的正面聚合反应
正面聚合在补充直接写墨等增材制造工艺方面具有巨大潜力,因为与印刷速度同步的连续固化可以克服下垂等问题。为了研究将正面聚合纳入潜在印刷工艺的可能性,我们开发了一种可正面聚合的 DGEBA 环氧树脂,既可用于紫外线引发,也可用于热引发。在两种引发方法中,仅通过正面聚合就可观察到起始玻璃转化温度为 150°C 的完全转化。结果表明,热行为与所使用的引发辐照度或温度的关系不大,而与树脂中引发剂浓度的关系更大。通过改变引发剂浓度和固化条件,可最大限度地提高机械性能,达到 75 兆帕的拉伸应力和 1.2 兆帕-m1/2 的 K1C。事实证明,该树脂的货架稳定性很好,在室温下存放 12 周后粘度没有发生变化。亮点 使用 RICFP 对 EPON 826 进行正面聚合 使用了含有二芳基碘阳离子引发剂的四硼酸酯 12 周后仍保持稳定并可聚合 使用紫外线引发剂对树脂进行印刷和正面固化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Engineering and Science
Polymer Engineering and Science 工程技术-高分子科学
CiteScore
5.40
自引率
18.80%
发文量
329
审稿时长
3.7 months
期刊介绍: For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.
期刊最新文献
Epoxy composite dust reinforced novel polypropylene composites: An eco‐friendly approach toward sustainable resource management Nanosilica reinforced epoxy under super high strain rate loading Study on mechanical properties of a roadbed rehabilitation polyurethane grouting material after freeze–thaw cycles Synchronously enhanced thermal conductivity and dielectric properties of silicone rubber composites filled with the AlN‐PPy‐KH570 multilayer core‐shell hybrid structure PLA/CB and HDPE/CB conductive polymer composites: Effect of polymer matrix structure on the rheological and electrical percolation threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1