Tuning cellular structure in a previously developed microcellular acrylonitrile butadiene styrene/thermoplastic polyurethane blend foams

IF 3.2 4区 工程技术 Q2 ENGINEERING, CHEMICAL Polymer Engineering and Science Pub Date : 2024-08-23 DOI:10.1002/pen.26920
Sara Khaleghi, Taher Azdast, Rezgar Hasanzadeh, Chul B. Park, Asghar Rasouli
{"title":"Tuning cellular structure in a previously developed microcellular acrylonitrile butadiene styrene/thermoplastic polyurethane blend foams","authors":"Sara Khaleghi, Taher Azdast, Rezgar Hasanzadeh, Chul B. Park, Asghar Rasouli","doi":"10.1002/pen.26920","DOIUrl":null,"url":null,"abstract":"<jats:label/>This study investigates the cell structure control in 50% thermoplastic polyurethane (TPU) and 50% acrylonitrile butadiene styrene (ABS) blend foam using CO<jats:sub>2</jats:sub> as a physical blowing agent, focusing on the effects of variable foaming parameters on the microstructure. Samples measuring 25 × 25 × 1 mm were produced and analyzed for foam structure. The foaming process involved saturating the samples with CO<jats:sub>2</jats:sub> gas at pressures of 4, 5.5, and 7 MPa, followed by rapid pressure release and immersion in a hot glycerol bath. The foaming parameters included varied temperatures (80, 90, and 120°C) and times (5–80 s). Scanning electron microscope (SEM) analysis provided data on cell size and density. Results indicated that increasing the saturation pressure enhanced CO<jats:sub>2</jats:sub> uptake in the ABS/TPU blend, with the CO<jats:sub>2</jats:sub> uptake rate peaking early in the process. Higher foaming temperatures and extended foaming times led to increased cell size, cell density, and expansion ratio. These findings highlight the significant role of process parameters in controlling the cell structure of ABS/TPU blend foams, offering valuable insights into optimizing foam properties for industrial applications.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Optimization of foam parameters leads to cell structure control in ABS/TPU composite foams for industrial applications.</jats:list-item> <jats:list-item>Increasing saturation pressure significantly boosts CO<jats:sub>2</jats:sub> uptake in ABS/TPU composite foams.</jats:list-item> <jats:list-item>Increasing the foaming temperature and duration leads to larger cell sizes, higher cell density, and greater expansion ratios in ABS/TPU composite foams.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"38 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26920","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the cell structure control in 50% thermoplastic polyurethane (TPU) and 50% acrylonitrile butadiene styrene (ABS) blend foam using CO2 as a physical blowing agent, focusing on the effects of variable foaming parameters on the microstructure. Samples measuring 25 × 25 × 1 mm were produced and analyzed for foam structure. The foaming process involved saturating the samples with CO2 gas at pressures of 4, 5.5, and 7 MPa, followed by rapid pressure release and immersion in a hot glycerol bath. The foaming parameters included varied temperatures (80, 90, and 120°C) and times (5–80 s). Scanning electron microscope (SEM) analysis provided data on cell size and density. Results indicated that increasing the saturation pressure enhanced CO2 uptake in the ABS/TPU blend, with the CO2 uptake rate peaking early in the process. Higher foaming temperatures and extended foaming times led to increased cell size, cell density, and expansion ratio. These findings highlight the significant role of process parameters in controlling the cell structure of ABS/TPU blend foams, offering valuable insights into optimizing foam properties for industrial applications.Highlights Optimization of foam parameters leads to cell structure control in ABS/TPU composite foams for industrial applications. Increasing saturation pressure significantly boosts CO2 uptake in ABS/TPU composite foams. Increasing the foaming temperature and duration leads to larger cell sizes, higher cell density, and greater expansion ratios in ABS/TPU composite foams.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整之前开发的微孔丙烯腈-丁二烯-苯乙烯/热塑性聚氨酯共混泡沫的蜂窝结构
本研究采用二氧化碳作为物理发泡剂,对 50%热塑性聚氨酯(TPU)和 50%丙烯腈-丁二烯-苯乙烯(ABS)共混泡沫的孔结构控制进行了研究,重点关注不同发泡参数对微观结构的影响。生产的样品尺寸为 25 × 25 × 1 毫米,并对泡沫结构进行了分析。发泡过程包括在 4、5.5 和 7 兆帕压力下用二氧化碳气体使样品饱和,然后快速释放压力并浸入热甘油浴中。发泡参数包括不同的温度(80、90 和 120°C)和时间(5-80 秒)。扫描电子显微镜(SEM)分析提供了有关细胞大小和密度的数据。结果表明,增加饱和压力可提高 ABS/TPU 混合物的二氧化碳吸收率,二氧化碳吸收率在工艺初期达到峰值。较高的发泡温度和较长的发泡时间会导致电池尺寸、电池密度和膨胀率的增加。这些发现强调了工艺参数在控制 ABS/TPU 混合泡沫的孔结构中的重要作用,为优化工业应用中的泡沫特性提供了宝贵的见解。提高饱和压力可显著提高 ABS/TPU 复合泡沫的二氧化碳吸收率。提高发泡温度和持续时间可使 ABS/TPU 复合泡沫的泡孔尺寸更大、泡孔密度更高、膨胀率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Engineering and Science
Polymer Engineering and Science 工程技术-高分子科学
CiteScore
5.40
自引率
18.80%
发文量
329
审稿时长
3.7 months
期刊介绍: For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.
期刊最新文献
Epoxy composite dust reinforced novel polypropylene composites: An eco‐friendly approach toward sustainable resource management Nanosilica reinforced epoxy under super high strain rate loading Study on mechanical properties of a roadbed rehabilitation polyurethane grouting material after freeze–thaw cycles Synchronously enhanced thermal conductivity and dielectric properties of silicone rubber composites filled with the AlN‐PPy‐KH570 multilayer core‐shell hybrid structure PLA/CB and HDPE/CB conductive polymer composites: Effect of polymer matrix structure on the rheological and electrical percolation threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1