Study on the UV aging resistance of ZnO‐modified epoxy resin by experiments and MD simulation

IF 3.2 4区 工程技术 Q2 ENGINEERING, CHEMICAL Polymer Engineering and Science Pub Date : 2024-09-09 DOI:10.1002/pen.26957
Hao Zhang, Xiaocheng Chu, Qingjun Ding, Gai Zhao, Huafeng Li
{"title":"Study on the UV aging resistance of ZnO‐modified epoxy resin by experiments and MD simulation","authors":"Hao Zhang, Xiaocheng Chu, Qingjun Ding, Gai Zhao, Huafeng Li","doi":"10.1002/pen.26957","DOIUrl":null,"url":null,"abstract":"This study investigates the impact of zinc oxide nanoparticles on epoxy resin systems and the ultraviolet (UV) aging resistance of modified epoxy resin composites using molecular dynamics (MD) simulations and experimental methods. Initially, various epoxy resin cross‐linking models are established through MD simulations to understand the influence of different nano ZnO contents on resin modification, further validated by experiments. Subsequently, the UV radiation resistance of nano ZnO–epoxy resin composites is assessed by subjecting them to high‐intensity UV radiation equivalent to 3 years of natural environmental conditions, analyzing changes in tensile properties, impact performance, hardness, and glass transition temperature of epoxy resin before and after UV radiation exposure. The findings suggest that the addition of nano zinc oxide reduces the impact of UV radiation on epoxy resin, with optimal UV radiation resistance observed at a nano zinc oxide mass fraction of 0.3 wt%.","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"123 15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26957","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of zinc oxide nanoparticles on epoxy resin systems and the ultraviolet (UV) aging resistance of modified epoxy resin composites using molecular dynamics (MD) simulations and experimental methods. Initially, various epoxy resin cross‐linking models are established through MD simulations to understand the influence of different nano ZnO contents on resin modification, further validated by experiments. Subsequently, the UV radiation resistance of nano ZnO–epoxy resin composites is assessed by subjecting them to high‐intensity UV radiation equivalent to 3 years of natural environmental conditions, analyzing changes in tensile properties, impact performance, hardness, and glass transition temperature of epoxy resin before and after UV radiation exposure. The findings suggest that the addition of nano zinc oxide reduces the impact of UV radiation on epoxy resin, with optimal UV radiation resistance observed at a nano zinc oxide mass fraction of 0.3 wt%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过实验和 MD 模拟研究氧化锌改性环氧树脂的抗紫外线老化性能
本研究采用分子动力学(MD)模拟和实验方法研究了纳米氧化锌对环氧树脂体系的影响以及改性环氧树脂复合材料的抗紫外线(UV)老化性能。首先,通过 MD 模拟建立了各种环氧树脂交联模型,以了解不同纳米 ZnO 含量对树脂改性的影响,并进一步通过实验进行验证。随后,将纳米 ZnO-环氧树脂复合材料置于相当于 3 年自然环境条件下的高强度紫外线辐射下,评估其抗紫外线辐射性能,分析紫外线辐射前后环氧树脂的拉伸性能、冲击性能、硬度和玻璃化转变温度的变化。研究结果表明,添加纳米氧化锌可降低紫外线辐射对环氧树脂的影响,纳米氧化锌的质量分数为 0.3 wt%时,抗紫外线辐射性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Engineering and Science
Polymer Engineering and Science 工程技术-高分子科学
CiteScore
5.40
自引率
18.80%
发文量
329
审稿时长
3.7 months
期刊介绍: For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.
期刊最新文献
Epoxy composite dust reinforced novel polypropylene composites: An eco‐friendly approach toward sustainable resource management Nanosilica reinforced epoxy under super high strain rate loading Study on mechanical properties of a roadbed rehabilitation polyurethane grouting material after freeze–thaw cycles Synchronously enhanced thermal conductivity and dielectric properties of silicone rubber composites filled with the AlN‐PPy‐KH570 multilayer core‐shell hybrid structure PLA/CB and HDPE/CB conductive polymer composites: Effect of polymer matrix structure on the rheological and electrical percolation threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1