{"title":"Application of wet carbon black masterbatch in green mining radial tires","authors":"Kangyu Luo, Zifeng Wang, Zhanfu Yong","doi":"10.1002/pen.26952","DOIUrl":null,"url":null,"abstract":"<jats:label/>In the context of environmental protection and energy consumption reduction, reducing the rolling resistance of mining machinery tires is one of the important methods to achieve the goal of green mining. This study probes the effects of wet mixing with a wet carbon black masterbatch on the rolling resistance and grounding performance of wide‐body vehicle tire treads by investigating the cross‐linking structure, rubber–filler (R–F) interaction force, and physicomechanical properties of the wet mixing rubber compounded with a wet carbon black masterbatch. The results indicate decreases in the maximum torque‐minimum torque difference, cross‐link density, and R–F interaction of the wet mixing rubber and increased filler–filler (F–F) interaction and carbon black dispersion. Meanwhile, the tensile elongation of the wet mixing rubber increases, its DIN abrasion property improves, and its Tanδ decreases at 60°C. A numerical method to estimate tire steady‐state rolling resistance is also developed. Finite element simulation analysis reveals that the steady‐state rolling resistance of the wet mixing rubber is reduced by 7.04% at 100% standard load, and its grounding performance is enhanced. By proposing a method to reduce the rolling resistance of tires, this study also provides a reference for the development of wide‐body vehicle tires.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Explored the filler interaction of wet mixing rubber.</jats:list-item> <jats:list-item>Explained the low energy loss of wet mixing rubber.</jats:list-item> <jats:list-item>Proposed a new finite element method for calculating tire rolling resistance.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"9 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26952","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of environmental protection and energy consumption reduction, reducing the rolling resistance of mining machinery tires is one of the important methods to achieve the goal of green mining. This study probes the effects of wet mixing with a wet carbon black masterbatch on the rolling resistance and grounding performance of wide‐body vehicle tire treads by investigating the cross‐linking structure, rubber–filler (R–F) interaction force, and physicomechanical properties of the wet mixing rubber compounded with a wet carbon black masterbatch. The results indicate decreases in the maximum torque‐minimum torque difference, cross‐link density, and R–F interaction of the wet mixing rubber and increased filler–filler (F–F) interaction and carbon black dispersion. Meanwhile, the tensile elongation of the wet mixing rubber increases, its DIN abrasion property improves, and its Tanδ decreases at 60°C. A numerical method to estimate tire steady‐state rolling resistance is also developed. Finite element simulation analysis reveals that the steady‐state rolling resistance of the wet mixing rubber is reduced by 7.04% at 100% standard load, and its grounding performance is enhanced. By proposing a method to reduce the rolling resistance of tires, this study also provides a reference for the development of wide‐body vehicle tires.HighlightsExplored the filler interaction of wet mixing rubber.Explained the low energy loss of wet mixing rubber.Proposed a new finite element method for calculating tire rolling resistance.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.