Yeremia Gunawan Adhisantoso, Tim Körner, Fabian Müntefering, Jörn Ostermann, Jan Voges
{"title":"HiCMC: High-Efficiency Contact Matrix Compressor","authors":"Yeremia Gunawan Adhisantoso, Tim Körner, Fabian Müntefering, Jörn Ostermann, Jan Voges","doi":"10.1186/s12859-024-05907-2","DOIUrl":null,"url":null,"abstract":"Chromosome organization plays an important role in biological processes such as replication, regulation, and transcription. One way to study the relationship between chromosome structure and its biological functions is through Hi-C studies, a genome-wide method for capturing chromosome conformation. Such studies generate vast amounts of data. The problem is exacerbated by the fact that chromosome organization is dynamic, requiring snapshots at different points in time, further increasing the amount of data to be stored. We present a novel approach called the High-Efficiency Contact Matrix Compressor (HiCMC) for efficient compression of Hi-C data. By modeling the underlying structures found in the contact matrix, such as compartments and domains, HiCMC outperforms the state-of-the-art method CMC by approximately 8% and the other state-of-the-art methods cooler, LZMA, and bzip2 by over 50% across multiple cell lines and contact matrix resolutions. In addition, HiCMC integrates domain-specific information into the compressed bitstreams that it generates, and this information can be used to speed up downstream analyses. HiCMC is a novel compression approach that utilizes intrinsic properties of contact matrix, such as compartments and domains. It allows for a better compression in comparison to the state-of-the-art methods. HiCMC is available at https://github.com/sXperfect/hicmc .","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05907-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chromosome organization plays an important role in biological processes such as replication, regulation, and transcription. One way to study the relationship between chromosome structure and its biological functions is through Hi-C studies, a genome-wide method for capturing chromosome conformation. Such studies generate vast amounts of data. The problem is exacerbated by the fact that chromosome organization is dynamic, requiring snapshots at different points in time, further increasing the amount of data to be stored. We present a novel approach called the High-Efficiency Contact Matrix Compressor (HiCMC) for efficient compression of Hi-C data. By modeling the underlying structures found in the contact matrix, such as compartments and domains, HiCMC outperforms the state-of-the-art method CMC by approximately 8% and the other state-of-the-art methods cooler, LZMA, and bzip2 by over 50% across multiple cell lines and contact matrix resolutions. In addition, HiCMC integrates domain-specific information into the compressed bitstreams that it generates, and this information can be used to speed up downstream analyses. HiCMC is a novel compression approach that utilizes intrinsic properties of contact matrix, such as compartments and domains. It allows for a better compression in comparison to the state-of-the-art methods. HiCMC is available at https://github.com/sXperfect/hicmc .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.