Hee-Jeong Hwang, Jee-Woo Kim, Jun-Bong Choi, Myong-Soo Chung
{"title":"Effects of the Specific Wavelength and Intensity of Intense Pulsed Light (IPL) on Microbial Inactivation","authors":"Hee-Jeong Hwang, Jee-Woo Kim, Jun-Bong Choi, Myong-Soo Chung","doi":"10.1007/s11947-024-03560-4","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to determine the effects of the specific wavelength and intensity of IPL on microbial inactivation by applying IPL under various conditions with the same fluence. Nine different filters were used to obtain pulse light sources with various composition ratios in the ultraviolet (UV), visible light (VL), and infrared (IR) ranges, and the inactivation was compared among gram-positive bacteria, gram-negative bacteria, and yeast. When gram-positive bacteria were treated with a light source that accounted for 85.29% of the total wavelength in the UV range, a significant reduction of bacteria by 6 logs was achieved at the fluence of 2.16 J/cm<sup>2</sup>. However, it was noteworthy that even when UV accounted for only 11.66%, a 6-log reduction was achieved at 3.94 J/cm<sup>2</sup>. This study confirmed that the intensity of single pulses in IPL is as important as the UV range in microbial inactivation. Even if the proportion of UV in IPL is low, strong intensity of single pulses delivered to microorganisms can cause significant damage and increase inactivation. There was no significant difference in resistance to IPL between gram-positive and gram-negative bacteria, but yeast showed relatively higher resistance to IPL, and this tendency was more pronounced in IPL with higher UV content.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"55 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03560-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to determine the effects of the specific wavelength and intensity of IPL on microbial inactivation by applying IPL under various conditions with the same fluence. Nine different filters were used to obtain pulse light sources with various composition ratios in the ultraviolet (UV), visible light (VL), and infrared (IR) ranges, and the inactivation was compared among gram-positive bacteria, gram-negative bacteria, and yeast. When gram-positive bacteria were treated with a light source that accounted for 85.29% of the total wavelength in the UV range, a significant reduction of bacteria by 6 logs was achieved at the fluence of 2.16 J/cm2. However, it was noteworthy that even when UV accounted for only 11.66%, a 6-log reduction was achieved at 3.94 J/cm2. This study confirmed that the intensity of single pulses in IPL is as important as the UV range in microbial inactivation. Even if the proportion of UV in IPL is low, strong intensity of single pulses delivered to microorganisms can cause significant damage and increase inactivation. There was no significant difference in resistance to IPL between gram-positive and gram-negative bacteria, but yeast showed relatively higher resistance to IPL, and this tendency was more pronounced in IPL with higher UV content.
期刊介绍:
Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community.
The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.