{"title":"Three-dimensional plasmoid-mediated reconnection and turbulence in Hall magnetohydrodynamics","authors":"Yi-Min Huang, Amitava Bhattacharjee","doi":"10.1063/5.0216561","DOIUrl":null,"url":null,"abstract":"Plasmoid instability accelerates reconnection in collisional plasmas by transforming a laminar reconnection layer into numerous plasmoids connected by secondary current sheets in two dimensions (2D) and by fostering self-generated turbulent reconnection in three dimensions (3D). In large-scale astrophysical and space systems, plasmoid instability likely initiates in the collisional regime but may transition into the collisionless regime as the fragmentation of the current sheet progresses toward kinetic scales. Hall magnetohydrodynamics (MHD) models are widely regarded as a simplified yet effective representation of the transition from collisional to collisionless reconnection. However, plasmoid instability in 2D Hall MHD simulations often leads to a single-X-line reconnection configuration, which significantly differs from fully kinetic particle-in-cell simulation results. This study shows that single-X-line reconnection is less likely to occur in 3D compared to 2D. Moreover, depending on the Lundquist number and the ratio between the system size and the kinetic scale, Hall MHD can also realize 3D self-generated turbulent reconnection. We analyze the features of the self-generated turbulent state, including the energy power spectra and the scale dependence of turbulent eddy anisotropy.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"284 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0216561","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Plasmoid instability accelerates reconnection in collisional plasmas by transforming a laminar reconnection layer into numerous plasmoids connected by secondary current sheets in two dimensions (2D) and by fostering self-generated turbulent reconnection in three dimensions (3D). In large-scale astrophysical and space systems, plasmoid instability likely initiates in the collisional regime but may transition into the collisionless regime as the fragmentation of the current sheet progresses toward kinetic scales. Hall magnetohydrodynamics (MHD) models are widely regarded as a simplified yet effective representation of the transition from collisional to collisionless reconnection. However, plasmoid instability in 2D Hall MHD simulations often leads to a single-X-line reconnection configuration, which significantly differs from fully kinetic particle-in-cell simulation results. This study shows that single-X-line reconnection is less likely to occur in 3D compared to 2D. Moreover, depending on the Lundquist number and the ratio between the system size and the kinetic scale, Hall MHD can also realize 3D self-generated turbulent reconnection. We analyze the features of the self-generated turbulent state, including the energy power spectra and the scale dependence of turbulent eddy anisotropy.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas