DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos

Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, Ying Shan
{"title":"DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos","authors":"Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, Ying Shan","doi":"arxiv-2409.02095","DOIUrl":null,"url":null,"abstract":"Despite significant advancements in monocular depth estimation for static\nimages, estimating video depth in the open world remains challenging, since\nopen-world videos are extremely diverse in content, motion, camera movement,\nand length. We present DepthCrafter, an innovative method for generating\ntemporally consistent long depth sequences with intricate details for\nopen-world videos, without requiring any supplementary information such as\ncamera poses or optical flow. DepthCrafter achieves generalization ability to\nopen-world videos by training a video-to-depth model from a pre-trained\nimage-to-video diffusion model, through our meticulously designed three-stage\ntraining strategy with the compiled paired video-depth datasets. Our training\napproach enables the model to generate depth sequences with variable lengths at\none time, up to 110 frames, and harvest both precise depth details and rich\ncontent diversity from realistic and synthetic datasets. We also propose an\ninference strategy that processes extremely long videos through segment-wise\nestimation and seamless stitching. Comprehensive evaluations on multiple\ndatasets reveal that DepthCrafter achieves state-of-the-art performance in\nopen-world video depth estimation under zero-shot settings. Furthermore,\nDepthCrafter facilitates various downstream applications, including depth-based\nvisual effects and conditional video generation.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"175 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advancements in monocular depth estimation for static images, estimating video depth in the open world remains challenging, since open-world videos are extremely diverse in content, motion, camera movement, and length. We present DepthCrafter, an innovative method for generating temporally consistent long depth sequences with intricate details for open-world videos, without requiring any supplementary information such as camera poses or optical flow. DepthCrafter achieves generalization ability to open-world videos by training a video-to-depth model from a pre-trained image-to-video diffusion model, through our meticulously designed three-stage training strategy with the compiled paired video-depth datasets. Our training approach enables the model to generate depth sequences with variable lengths at one time, up to 110 frames, and harvest both precise depth details and rich content diversity from realistic and synthetic datasets. We also propose an inference strategy that processes extremely long videos through segment-wise estimation and seamless stitching. Comprehensive evaluations on multiple datasets reveal that DepthCrafter achieves state-of-the-art performance in open-world video depth estimation under zero-shot settings. Furthermore, DepthCrafter facilitates various downstream applications, including depth-based visual effects and conditional video generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DepthCrafter:为开放世界视频生成一致的长深度序列
尽管在静态图像的单目深度估算方面取得了重大进展,但在开放世界中估算视频深度仍然具有挑战性,因为开放世界视频在内容、运动、摄像机移动和长度方面都极其多样化。我们提出的 DepthCrafter 是一种创新方法,用于为开放世界视频生成具有复杂细节的时空一致的长深度序列,而不需要任何补充信息,如摄像机姿势或光流。DepthCrafter 通过精心设计的三阶段训练策略,利用编译的成对视频深度数据集,从预先训练的图像到视频扩散模型训练视频到深度模型,从而实现对开放世界视频的泛化能力。我们的训练方法使模型能够一次生成不同长度的深度序列,最长可达 110 帧,并从现实和合成数据集中获取精确的深度细节和丰富的内容多样性。我们还提出了一种推理策略,通过分段估计和无缝拼接来处理超长视频。在多个数据集上进行的综合评估表明,DepthCrafter 在零镜头设置下的开放世界视频深度估计方面达到了最先进的性能。此外,DepthCrafter 还为各种下游应用提供了便利,包括基于深度的视觉效果和条件视频生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1