Dynamic Motion Synthesis: Masked Audio-Text Conditioned Spatio-Temporal Transformers

Sohan Anisetty, James Hays
{"title":"Dynamic Motion Synthesis: Masked Audio-Text Conditioned Spatio-Temporal Transformers","authors":"Sohan Anisetty, James Hays","doi":"arxiv-2409.01591","DOIUrl":null,"url":null,"abstract":"Our research presents a novel motion generation framework designed to produce\nwhole-body motion sequences conditioned on multiple modalities simultaneously,\nspecifically text and audio inputs. Leveraging Vector Quantized Variational\nAutoencoders (VQVAEs) for motion discretization and a bidirectional Masked\nLanguage Modeling (MLM) strategy for efficient token prediction, our approach\nachieves improved processing efficiency and coherence in the generated motions.\nBy integrating spatial attention mechanisms and a token critic we ensure\nconsistency and naturalness in the generated motions. This framework expands\nthe possibilities of motion generation, addressing the limitations of existing\napproaches and opening avenues for multimodal motion synthesis.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our research presents a novel motion generation framework designed to produce whole-body motion sequences conditioned on multiple modalities simultaneously, specifically text and audio inputs. Leveraging Vector Quantized Variational Autoencoders (VQVAEs) for motion discretization and a bidirectional Masked Language Modeling (MLM) strategy for efficient token prediction, our approach achieves improved processing efficiency and coherence in the generated motions. By integrating spatial attention mechanisms and a token critic we ensure consistency and naturalness in the generated motions. This framework expands the possibilities of motion generation, addressing the limitations of existing approaches and opening avenues for multimodal motion synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态运动合成:屏蔽音频文本条件时空变换器
我们的研究提出了一种新颖的运动生成框架,旨在同时根据多种模式(特别是文本和音频输入)生成全身运动序列。我们的方法利用矢量量化变异自动编码器(VQVAE)进行运动离散化,并利用双向屏蔽语言建模(MLM)策略进行高效标记预测,从而提高了处理效率和生成运动的一致性。这一框架拓展了动作生成的可能性,解决了现有方法的局限性,为多模态动作合成开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1