Curvy: A Parametric Cross-section based Surface Reconstruction

Aradhya N. Mathur, Apoorv Khattar, Ojaswa Sharma
{"title":"Curvy: A Parametric Cross-section based Surface Reconstruction","authors":"Aradhya N. Mathur, Apoorv Khattar, Ojaswa Sharma","doi":"arxiv-2409.00829","DOIUrl":null,"url":null,"abstract":"In this work, we present a novel approach for reconstructing shape point\nclouds using planar sparse cross-sections with the help of generative modeling.\nWe present unique challenges pertaining to the representation and\nreconstruction in this problem setting. Most methods in the classical\nliterature lack the ability to generalize based on object class and employ\ncomplex mathematical machinery to reconstruct reliable surfaces. We present a\nsimple learnable approach to generate a large number of points from a small\nnumber of input cross-sections over a large dataset. We use a compact\nparametric polyline representation using adaptive splitting to represent the\ncross-sections and perform learning using a Graph Neural Network to reconstruct\nthe underlying shape in an adaptive manner reducing the dependence on the\nnumber of cross-sections provided.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a novel approach for reconstructing shape point clouds using planar sparse cross-sections with the help of generative modeling. We present unique challenges pertaining to the representation and reconstruction in this problem setting. Most methods in the classical literature lack the ability to generalize based on object class and employ complex mathematical machinery to reconstruct reliable surfaces. We present a simple learnable approach to generate a large number of points from a small number of input cross-sections over a large dataset. We use a compact parametric polyline representation using adaptive splitting to represent the cross-sections and perform learning using a Graph Neural Network to reconstruct the underlying shape in an adaptive manner reducing the dependence on the number of cross-sections provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Curvy:基于参数截面的曲面重构
在这项工作中,我们提出了一种借助生成模型使用平面稀疏截面重建形状点云的新方法。经典文献中的大多数方法都缺乏根据对象类别进行泛化的能力,并且采用复杂的数学机制来重建可靠的曲面。我们提出了一种简单易学的方法,可从大量数据集上的少量输入横截面生成大量点。我们使用自适应分割的紧凑参数多线表示法来表示横截面,并使用图神经网络进行学习,以自适应的方式重建底层形状,从而减少对所提供横截面数量的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1