UV-free Texture Generation with Denoising and Geodesic Heat Diffusions

Simone Foti, Stefanos Zafeiriou, Tolga Birdal
{"title":"UV-free Texture Generation with Denoising and Geodesic Heat Diffusions","authors":"Simone Foti, Stefanos Zafeiriou, Tolga Birdal","doi":"arxiv-2408.16762","DOIUrl":null,"url":null,"abstract":"Seams, distortions, wasted UV space, vertex-duplication, and varying\nresolution over the surface are the most prominent issues of the standard\nUV-based texturing of meshes. These issues are particularly acute when\nautomatic UV-unwrapping techniques are used. For this reason, instead of\ngenerating textures in automatically generated UV-planes like most\nstate-of-the-art methods, we propose to represent textures as coloured\npoint-clouds whose colours are generated by a denoising diffusion probabilistic\nmodel constrained to operate on the surface of 3D objects. Our sampling and\nresolution agnostic generative model heavily relies on heat diffusion over the\nsurface of the meshes for spatial communication between points. To enable\nprocessing of arbitrarily sampled point-cloud textures and ensure long-distance\ntexture consistency we introduce a fast re-sampling of the mesh spectral\nproperties used during the heat diffusion and introduce a novel\nheat-diffusion-based self-attention mechanism. Our code and pre-trained models\nare available at github.com/simofoti/UV3-TeD.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seams, distortions, wasted UV space, vertex-duplication, and varying resolution over the surface are the most prominent issues of the standard UV-based texturing of meshes. These issues are particularly acute when automatic UV-unwrapping techniques are used. For this reason, instead of generating textures in automatically generated UV-planes like most state-of-the-art methods, we propose to represent textures as coloured point-clouds whose colours are generated by a denoising diffusion probabilistic model constrained to operate on the surface of 3D objects. Our sampling and resolution agnostic generative model heavily relies on heat diffusion over the surface of the meshes for spatial communication between points. To enable processing of arbitrarily sampled point-cloud textures and ensure long-distance texture consistency we introduce a fast re-sampling of the mesh spectral properties used during the heat diffusion and introduce a novel heat-diffusion-based self-attention mechanism. Our code and pre-trained models are available at github.com/simofoti/UV3-TeD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用去噪和大地热扩散技术生成无紫外线纹理
接缝、变形、浪费 UV 空间、顶点重复和表面分辨率不一是基于标准 UV 的网格纹理制作最突出的问题。在使用自动 UV 解包技术时,这些问题尤为突出。因此,与大多数最先进的方法一样在自动生成的 UV 平面中生成纹理不同,我们建议将纹理表示为彩色点云,其颜色由去噪扩散概率模型生成,该模型受限于在三维物体表面运行。我们的采样和分辨率无关生成模型主要依靠网格表面的热扩散来实现点之间的空间通信。为了能够处理任意采样的点云纹理,并确保长距离纹理的一致性,我们对热扩散过程中使用的网格光谱属性进行了快速重新采样,并引入了一种新颖的基于热扩散的自我关注机制。我们的代码和预训练模型可在 github.com/simofoti/UV3-TeD 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1