{"title":"Initial imprint effect on dynamic mitigation of plasma instability","authors":"S. Kawata","doi":"10.1063/5.0225109","DOIUrl":null,"url":null,"abstract":"We proposed a dynamic mitigation method for plasma instabilities based on a phase control to mitigate plasma instabilities and to smooth plasma non-uniformities [e.g., Phys. Plasmas, 19 (2012), 024503]. In plasmas, perturbation phase would be unknown in general, and instability growth rate is discussed. However, if the perturbation is introduced by, for example, an illumination non-uniformity of an input energy driver beam, the perturbation phase would be defined by the driver illumination non-uniformity itself. When the driver axis is controlled by its axis oscillation or wobbling motion, the perturbation phase would be known and controlled. By the superimposition of the growing phase-controlled perturbations, the overall plasma instability growth is mitigated. The dynamic mitigation method is effective to mitigate growths of various plasma instabilities. At the same time, it was found that the phase of the growing perturbations mitigated would be still defined by the initial imprint. In this paper, the initial imprint effect is focused on the dynamic mitigation mechanism in plasmas. The results in this paper demonstrate that the initial imprint effect is reduced by an appropriate pulse shaping of the oscillating or wobbling perturbation.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"284 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0225109","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We proposed a dynamic mitigation method for plasma instabilities based on a phase control to mitigate plasma instabilities and to smooth plasma non-uniformities [e.g., Phys. Plasmas, 19 (2012), 024503]. In plasmas, perturbation phase would be unknown in general, and instability growth rate is discussed. However, if the perturbation is introduced by, for example, an illumination non-uniformity of an input energy driver beam, the perturbation phase would be defined by the driver illumination non-uniformity itself. When the driver axis is controlled by its axis oscillation or wobbling motion, the perturbation phase would be known and controlled. By the superimposition of the growing phase-controlled perturbations, the overall plasma instability growth is mitigated. The dynamic mitigation method is effective to mitigate growths of various plasma instabilities. At the same time, it was found that the phase of the growing perturbations mitigated would be still defined by the initial imprint. In this paper, the initial imprint effect is focused on the dynamic mitigation mechanism in plasmas. The results in this paper demonstrate that the initial imprint effect is reduced by an appropriate pulse shaping of the oscillating or wobbling perturbation.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas