Parker J. Roberts, Vernon H. Chaplin, Benjamin A. Jorns
{"title":"Azimuthal ion dynamics at the inner pole of an axisymmetric Hall thruster","authors":"Parker J. Roberts, Vernon H. Chaplin, Benjamin A. Jorns","doi":"10.1063/5.0214477","DOIUrl":null,"url":null,"abstract":"The azimuthal dynamics of ions along the inner pole of a Hall thruster with a centrally mounted cathode and a magnetic shielding topography are experimentally investigated. A time-averaged laser-induced fluorescence diagnostic is implemented to characterize the azimuthal ion velocity distribution, and its moments are computed numerically to infer bulk rotation speed and ion temperature. It is found that the time-averaged ion swirl velocity grows to 2 km/s in the near-pole region, and the cathode ions exhibit ion temperatures in the azimuthal direction approaching 8 eV. Both of these quantities exceed the speeds and temperatures anticipated from classical acceleration and heating. Time-resolved laser-induced fluorescence is then employed to investigate the role of plasma fluctuations in driving the time-averaged ion properties. Semicoherent fluctuations at 90 kHz are observed in the ion velocity distribution and its associated moments. These oscillations are correlated with the gradient-driven anti-drift wave, which propagates azimuthally in the near-field cathode plume. Quasilinear theory is used to construct a 1D model for acceleration and heating of the ion population as a result of the anti-drift mode. This approach demonstrates qualitative agreement with the time-averaged ion velocity and temperature, suggesting that the anti-drift mode may be a dominant driver of azimuthal ion acceleration and heating in front of the cathode keeper and the inner half of the inner front pole cover. These results are discussed in terms of their relevance to the erosion of thruster surfaces in the near-field cathode plume.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"38 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0214477","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The azimuthal dynamics of ions along the inner pole of a Hall thruster with a centrally mounted cathode and a magnetic shielding topography are experimentally investigated. A time-averaged laser-induced fluorescence diagnostic is implemented to characterize the azimuthal ion velocity distribution, and its moments are computed numerically to infer bulk rotation speed and ion temperature. It is found that the time-averaged ion swirl velocity grows to 2 km/s in the near-pole region, and the cathode ions exhibit ion temperatures in the azimuthal direction approaching 8 eV. Both of these quantities exceed the speeds and temperatures anticipated from classical acceleration and heating. Time-resolved laser-induced fluorescence is then employed to investigate the role of plasma fluctuations in driving the time-averaged ion properties. Semicoherent fluctuations at 90 kHz are observed in the ion velocity distribution and its associated moments. These oscillations are correlated with the gradient-driven anti-drift wave, which propagates azimuthally in the near-field cathode plume. Quasilinear theory is used to construct a 1D model for acceleration and heating of the ion population as a result of the anti-drift mode. This approach demonstrates qualitative agreement with the time-averaged ion velocity and temperature, suggesting that the anti-drift mode may be a dominant driver of azimuthal ion acceleration and heating in front of the cathode keeper and the inner half of the inner front pole cover. These results are discussed in terms of their relevance to the erosion of thruster surfaces in the near-field cathode plume.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas