A Riemannian Approach for Spatiotemporal Analysis and Generation of 4D Tree-shaped Structures

Tahmina Khanam, Hamid Laga, Mohammed Bennamoun, Guanjin Wang, Ferdous Sohel, Farid Boussaid, Guan Wang, Anuj Srivastava
{"title":"A Riemannian Approach for Spatiotemporal Analysis and Generation of 4D Tree-shaped Structures","authors":"Tahmina Khanam, Hamid Laga, Mohammed Bennamoun, Guanjin Wang, Ferdous Sohel, Farid Boussaid, Guan Wang, Anuj Srivastava","doi":"arxiv-2408.12443","DOIUrl":null,"url":null,"abstract":"We propose the first comprehensive approach for modeling and analyzing the\nspatiotemporal shape variability in tree-like 4D objects, i.e., 3D objects\nwhose shapes bend, stretch, and change in their branching structure over time\nas they deform, grow, and interact with their environment. Our key contribution\nis the representation of tree-like 3D shapes using Square Root Velocity\nFunction Trees (SRVFT). By solving the spatial registration in the SRVFT space,\nwhich is equipped with an L2 metric, 4D tree-shaped structures become\ntime-parameterized trajectories in this space. This reduces the problem of\nmodeling and analyzing 4D tree-like shapes to that of modeling and analyzing\nelastic trajectories in the SRVFT space, where elasticity refers to time\nwarping. In this paper, we propose a novel mathematical representation of the\nshape space of such trajectories, a Riemannian metric on that space, and\ncomputational tools for fast and accurate spatiotemporal registration and\ngeodesics computation between 4D tree-shaped structures. Leveraging these\nbuilding blocks, we develop a full framework for modelling the spatiotemporal\nvariability using statistical models and generating novel 4D tree-like\nstructures from a set of exemplars. We demonstrate and validate the proposed\nframework using real 4D plant data.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose the first comprehensive approach for modeling and analyzing the spatiotemporal shape variability in tree-like 4D objects, i.e., 3D objects whose shapes bend, stretch, and change in their branching structure over time as they deform, grow, and interact with their environment. Our key contribution is the representation of tree-like 3D shapes using Square Root Velocity Function Trees (SRVFT). By solving the spatial registration in the SRVFT space, which is equipped with an L2 metric, 4D tree-shaped structures become time-parameterized trajectories in this space. This reduces the problem of modeling and analyzing 4D tree-like shapes to that of modeling and analyzing elastic trajectories in the SRVFT space, where elasticity refers to time warping. In this paper, we propose a novel mathematical representation of the shape space of such trajectories, a Riemannian metric on that space, and computational tools for fast and accurate spatiotemporal registration and geodesics computation between 4D tree-shaped structures. Leveraging these building blocks, we develop a full framework for modelling the spatiotemporal variability using statistical models and generating novel 4D tree-like structures from a set of exemplars. We demonstrate and validate the proposed framework using real 4D plant data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于时空分析和生成四维树形结构的黎曼方法
我们提出了第一种全面的方法来模拟和分析树状四维物体的时空形状变化,即三维物体在变形、生长和与环境相互作用时,其形状会随着时间的推移而弯曲、伸展和改变其分支结构。我们的主要贡献是使用平方根速度函数树(SRVFT)来表示树状三维形状。通过解决 SRVFT 空间中的空间配准问题,4D 树形结构在该空间中就变成了时间参数化的轨迹。这将 4D 树状结构的建模和分析问题简化为 SRVFT 空间中弹性轨迹的建模和分析问题,其中弹性指的是时间扭曲。在本文中,我们提出了此类轨迹的形状空间的新数学表示法、该空间的黎曼度量,以及用于 4D 树状结构之间快速准确的时空配准和大地线计算的计算工具。利用这些构建模块,我们开发了一个完整的框架,利用统计模型对时空可变性进行建模,并从一组示例生成新的 4D 树状结构。我们使用真实的 4D 植物数据演示并验证了所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1