{"title":"Magnetic reconnection on a Klein bottle","authors":"Luke Xia, M. Swisdak","doi":"10.1063/5.0222454","DOIUrl":null,"url":null,"abstract":"We present a new boundary condition for simulations of magnetic reconnection based on the topology of a Klein bottle. When applicable, the new condition is computationally cheaper than fully periodic boundary conditions, reconnects more flux than systems with conducting boundaries, and does not require assumptions about regions external to the simulation as is necessary for open boundaries. The new condition reproduces the expected features of reconnection but cannot be straightforwardly applied in systems with asymmetric upstream plasmas.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222454","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new boundary condition for simulations of magnetic reconnection based on the topology of a Klein bottle. When applicable, the new condition is computationally cheaper than fully periodic boundary conditions, reconnects more flux than systems with conducting boundaries, and does not require assumptions about regions external to the simulation as is necessary for open boundaries. The new condition reproduces the expected features of reconnection but cannot be straightforwardly applied in systems with asymmetric upstream plasmas.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas