Molecular beam epitaxy growth of topological insulator Bi4Br4 on silicon for the infrared applications

Shiqi Xu, Xiangkai Meng, Xu Zhang, Chunpan Zhang, Jiangyue Bai, Yujiu Jiang, Xiuxia Li, Chong Wang, Pengcheng Mao, Junfeng Han, Yugui Yao
{"title":"Molecular beam epitaxy growth of topological insulator Bi4Br4 on silicon for the infrared applications","authors":"Shiqi Xu, Xiangkai Meng, Xu Zhang, Chunpan Zhang, Jiangyue Bai, Yujiu Jiang, Xiuxia Li, Chong Wang, Pengcheng Mao, Junfeng Han, Yugui Yao","doi":"10.1007/s44214-024-00062-4","DOIUrl":null,"url":null,"abstract":"<p>Bi<sub>4</sub>Br<sub>4</sub> is a material rich in intriguing topological properties. Monolayer Bi<sub>4</sub>Br<sub>4</sub> film exhibits helical edge states characteristic of a quantum spin Hall insulator, while bulk Bi<sub>4</sub>Br<sub>4</sub> represents a higher-order topological insulator with hinge states. However, direct exfoliation from single crystal can only obtain thin nanowires due to the weak van der Waals forces between Bi<sub>4</sub>Br<sub>4</sub> chains, which limits its optical analysis and application, while the growth of Bi<sub>4</sub>Br<sub>4</sub> thin films is also full of challenges due to the extremely narrow growth temperature range and the accurate control of the BiBr<sub>3</sub> flux. Here, we reported the controlled growth of <i>α</i>-Bi<sub>4</sub>Br<sub>4</sub> thin films on intrinsic silicon substrates using molecular beam epitaxy. The growth temperature, BiBr<sub>3</sub> flux, and the flux ratio of Bi and BiBr<sub>3</sub> were accurately controlled. Then, the morphology, composition, and bonding of the prepared films were investigated using atomic force microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The growth of large, uniform thin films provides an ideal material platform for studying the physical properties of Bi<sub>4</sub>Br<sub>4</sub>. Additionally, we utilized Fourier-transform infrared spectroscopy to explore the film’s infrared characteristics, revealing strong absorption in the low frequency range due to the high proportion of one-dimensional topological edge states and laying the groundwork for further exploration of its potential applications in the optoelectronic field.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44214-024-00062-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bi4Br4 is a material rich in intriguing topological properties. Monolayer Bi4Br4 film exhibits helical edge states characteristic of a quantum spin Hall insulator, while bulk Bi4Br4 represents a higher-order topological insulator with hinge states. However, direct exfoliation from single crystal can only obtain thin nanowires due to the weak van der Waals forces between Bi4Br4 chains, which limits its optical analysis and application, while the growth of Bi4Br4 thin films is also full of challenges due to the extremely narrow growth temperature range and the accurate control of the BiBr3 flux. Here, we reported the controlled growth of α-Bi4Br4 thin films on intrinsic silicon substrates using molecular beam epitaxy. The growth temperature, BiBr3 flux, and the flux ratio of Bi and BiBr3 were accurately controlled. Then, the morphology, composition, and bonding of the prepared films were investigated using atomic force microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The growth of large, uniform thin films provides an ideal material platform for studying the physical properties of Bi4Br4. Additionally, we utilized Fourier-transform infrared spectroscopy to explore the film’s infrared characteristics, revealing strong absorption in the low frequency range due to the high proportion of one-dimensional topological edge states and laying the groundwork for further exploration of its potential applications in the optoelectronic field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子束外延在硅上生长拓扑绝缘体 Bi4Br4,用于红外应用
Bi4Br4 是一种富含奇妙拓扑特性的材料。单层 Bi4Br4 薄膜呈现出量子自旋霍尔绝缘体所特有的螺旋边缘态,而块状 Bi4Br4 则是具有铰链态的高阶拓扑绝缘体。然而,由于 Bi4Br4 链之间的范德华力很弱,从单晶直接剥离只能获得很细的纳米线,这限制了其光学分析和应用,而 Bi4Br4 薄膜的生长也因生长温度范围极窄和 BiBr3 通量的精确控制而充满挑战。在此,我们报告了利用分子束外延技术在本征硅衬底上可控生长 α-Bi4Br4 薄膜的情况。生长温度、BiBr3 通量以及 Bi 和 BiBr3 的通量比都得到了精确控制。然后,使用原子力显微镜、X 射线光电子能谱和拉曼光谱研究了所制备薄膜的形貌、成分和键合。大面积均匀薄膜的生长为研究 Bi4Br4 的物理性质提供了理想的材料平台。此外,我们还利用傅立叶变换红外光谱法探究了薄膜的红外特性,发现由于一维拓扑边缘态比例较高,薄膜在低频范围内具有较强的吸收性,为进一步探索其在光电领域的潜在应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interface superconductivity in the point contact between topological semimetals polymorphic PtBi2 and ferromagnetic tips Superconductivity and topological quantum states in two-dimensional moiré superlattices Molecular beam epitaxy growth of topological insulator Bi4Br4 on silicon for the infrared applications Structural design and molecular beam epitaxy growth of GaAs and InAs heterostructures for high mobility two-dimensional electron gas Dynamical chiral Nernst effect in twisted Van der Waals few layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1