Bismuth Metal Porphyrin Framework Doped RuO2 Derived Bi2O3-RuO2@C Composites for Highly Selective CO2 Electroreduction

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-09-08 DOI:10.1149/1945-7111/ad7532
Mingran Yang, Yingchen Xu, Zhengcha Pang, Chenghan Yang, Jinqiang Huang, Min Zhu and Yiwei Zhang
{"title":"Bismuth Metal Porphyrin Framework Doped RuO2 Derived Bi2O3-RuO2@C Composites for Highly Selective CO2 Electroreduction","authors":"Mingran Yang, Yingchen Xu, Zhengcha Pang, Chenghan Yang, Jinqiang Huang, Min Zhu and Yiwei Zhang","doi":"10.1149/1945-7111/ad7532","DOIUrl":null,"url":null,"abstract":"In electrochemical reduction of carbon dioxide (CO2RR), the design of electrocatalysts with high efficiency and selectivity is very important and challenging. In this paper, a ternary composite consisting of ruthenium dioxide and bismuth metal porphyrin-based organic framework (Bi-TCPP MOF)-derived bismuth trioxide and C skeleton has been proposed (denoted as Bi2O3-RuO2@C). Nanoscale RuO2 and Bi2O3 particles are uniformly distributed on the C skeleton. The precursor bismuth metal porphyrin-based organic framework restricts the localized growth of Bi2O3 in the framework, while the unique, highly-conjugated system anchors the doped RuO2 particles, resulting in a uniform distribution of both active sites and hole-enrichment centers. Meanwhile, the Bi-TCPP MOF-derived carbon skeleton has good electrical conductivity, and the macroporous structure also facilitates the gas transport, which leads to the synthesis of Bi2O3-RuO2@C as an electrocatalyst for CO2RR and exhibits excellent catalytic performance and high selectivity for electrocatalytic carbon dioxide reduction to methane (CO2-CH4). The peak Faraday efficiency of Bi2O3-RuO2@C for catalyzing the reduction of CO2-CH4 can reach 66.95% when the doped RuO2 content is 20%. Importantly, this work opens up new horizons for metal ratio regulation in constructing efficient catalytic systems derived from MOFs.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"29 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad7532","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In electrochemical reduction of carbon dioxide (CO2RR), the design of electrocatalysts with high efficiency and selectivity is very important and challenging. In this paper, a ternary composite consisting of ruthenium dioxide and bismuth metal porphyrin-based organic framework (Bi-TCPP MOF)-derived bismuth trioxide and C skeleton has been proposed (denoted as Bi2O3-RuO2@C). Nanoscale RuO2 and Bi2O3 particles are uniformly distributed on the C skeleton. The precursor bismuth metal porphyrin-based organic framework restricts the localized growth of Bi2O3 in the framework, while the unique, highly-conjugated system anchors the doped RuO2 particles, resulting in a uniform distribution of both active sites and hole-enrichment centers. Meanwhile, the Bi-TCPP MOF-derived carbon skeleton has good electrical conductivity, and the macroporous structure also facilitates the gas transport, which leads to the synthesis of Bi2O3-RuO2@C as an electrocatalyst for CO2RR and exhibits excellent catalytic performance and high selectivity for electrocatalytic carbon dioxide reduction to methane (CO2-CH4). The peak Faraday efficiency of Bi2O3-RuO2@C for catalyzing the reduction of CO2-CH4 can reach 66.95% when the doped RuO2 content is 20%. Importantly, this work opens up new horizons for metal ratio regulation in constructing efficient catalytic systems derived from MOFs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 RuO2 的铋金属卟啉框架衍生 Bi2O3-RuO2@C 复合材料用于高选择性二氧化碳电还原
在二氧化碳的电化学还原(CO2RR)过程中,设计具有高效率和高选择性的电催化剂非常重要,也极具挑战性。本文提出了一种由二氧化钌和金属卟啉铋有机框架(Bi-TCPP MOF)衍生的三氧化二铋和 C 骨架组成的三元复合材料(称为 Bi2O3-RuO2@C)。纳米级 RuO2 和 Bi2O3 颗粒均匀地分布在 C 骨架上。基于铋金属卟啉的前体有机骨架限制了 Bi2O3 在骨架中的局部生长,而独特的高度共轭体系锚定了掺杂的 RuO2 颗粒,从而使活性位点和空穴富集中心均匀分布。同时,Bi-TCPP MOF 衍生的碳骨架具有良好的导电性,大孔结构也有利于气体的传输,从而合成了 Bi2O3-RuO2@C 作为 CO2RR 的电催化剂,并在电催化二氧化碳还原成甲烷(CO2-CH4)中表现出优异的催化性能和高选择性。当掺杂的 RuO2 含量为 20% 时,Bi2O3-RuO2@C 催化 CO2-CH4 还原的峰值法拉第效率可达 66.95%。重要的是,这项研究为利用 MOFs 构建高效催化系统的金属配比调节开辟了新天地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Electrochemical HOCl Production Modeling for an Electrochemical Catheter. Comprehensive Analysis of Commercial Sodium-Ion Batteries: Structural and Electrochemical Insights Electrochemical Behaviour of Nickel(II)-Rhenium(VII) And Electrodeposition of Nickel-Rhenium Alloy from Choline Chloride - Urea Deep Eutectic Solvent Optimization of Post-Annealing Temperature of RF Magnetron-Sputtered ZnO Thin Films for Enhancing Performances of UV Photodetectors Spatially Resolved Assessment and Analysis of Al-Zn, Mg, and Mg/Al-Zn Metal-Rich Primers Applied to AA 7075-T651 in Full Immersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1