Fabrication of Porous Metal Particles with Controlled Surface Structures by Barrel Anode Etching

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-09-04 DOI:10.1149/1945-7111/ad73a9
Takashi Yanagishita, Shota Ueno, Toshiaki Kondo, Hideki Masuda
{"title":"Fabrication of Porous Metal Particles with Controlled Surface Structures by Barrel Anode Etching","authors":"Takashi Yanagishita, Shota Ueno, Toshiaki Kondo, Hideki Masuda","doi":"10.1149/1945-7111/ad73a9","DOIUrl":null,"url":null,"abstract":"Porous Al particles with etching pits on their surfaces were prepared by anode etching using a rotating barrel. In this process, Al particles were placed in a barrel with a Pt plate electrode at the bottom. The Al particles were electrified by contacting the Pt electrode in the rotating barrel, and anode etching occurred on the surfaces of the Al particles. The structure of the etching pits formed on the surfaces of the Al particles could be controlled by adjusting the current and electrolysis time during the barrel anode etching. In addition, using an electrolyte solution with a surfactant, it was possible to form etching pits even on the surfaces of Al particles with sizes of 5 μm or less. Porous Mg particles could also be prepared by barrel anode etching using fine Mg particles as the starting material. The porous metal particles obtained using this process have a wide range of potential applications, including sensors, catalyst carriers, and batteries.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad73a9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Porous Al particles with etching pits on their surfaces were prepared by anode etching using a rotating barrel. In this process, Al particles were placed in a barrel with a Pt plate electrode at the bottom. The Al particles were electrified by contacting the Pt electrode in the rotating barrel, and anode etching occurred on the surfaces of the Al particles. The structure of the etching pits formed on the surfaces of the Al particles could be controlled by adjusting the current and electrolysis time during the barrel anode etching. In addition, using an electrolyte solution with a surfactant, it was possible to form etching pits even on the surfaces of Al particles with sizes of 5 μm or less. Porous Mg particles could also be prepared by barrel anode etching using fine Mg particles as the starting material. The porous metal particles obtained using this process have a wide range of potential applications, including sensors, catalyst carriers, and batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过桶式阳极蚀刻制造具有可控表面结构的多孔金属颗粒
多孔铝颗粒表面有蚀刻坑,是通过使用旋转桶进行阳极蚀刻制备的。在此过程中,将铝颗粒放入底部装有铂板电极的桶中。铝颗粒通过接触旋转桶中的铂电极而通电,铝颗粒表面发生阳极蚀刻。在桶阳极蚀刻过程中,可通过调节电流和电解时间来控制铝颗粒表面形成的蚀刻坑的结构。此外,使用含有表面活性剂的电解质溶液,甚至可以在尺寸为 5 μm 或更小的铝粒子表面形成蚀刻坑。以细小的镁颗粒为起始材料,通过桶式阳极蚀刻法也能制备出多孔镁颗粒。采用这种工艺制备的多孔金属颗粒具有广泛的潜在用途,包括传感器、催化剂载体和电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Electrochemical HOCl Production Modeling for an Electrochemical Catheter. Comprehensive Analysis of Commercial Sodium-Ion Batteries: Structural and Electrochemical Insights Electrochemical Behaviour of Nickel(II)-Rhenium(VII) And Electrodeposition of Nickel-Rhenium Alloy from Choline Chloride - Urea Deep Eutectic Solvent Optimization of Post-Annealing Temperature of RF Magnetron-Sputtered ZnO Thin Films for Enhancing Performances of UV Photodetectors Spatially Resolved Assessment and Analysis of Al-Zn, Mg, and Mg/Al-Zn Metal-Rich Primers Applied to AA 7075-T651 in Full Immersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1