{"title":"Mechanism Analysis of the Reduction Process of the NiO-YSZ Anode of a Solid Oxide Fuel Cell by Hydrogen","authors":"Xiaoyu Wang, Yongliang Zhang, Haiming Zhang, Wenwan Song, Tatsuya Kawada, Zewei Lyu, Minfang Han","doi":"10.1149/1945-7111/ad6bc2","DOIUrl":null,"url":null,"abstract":"Reduction of the nickel oxide-yttria stabilized zirconia (NiO-YSZ) anode is a significant step before the operation of a solid oxide fuel cell (SOFC). However, phenomena which occur during the reduction and their mechanism analyses are not summarized sufficiently. In this study, we investigated the influence of the hydrogen concentration, water vapor concentration of the reduction gas, Y<sub>2</sub>O<sub>3</sub> content of the YSZ material of the anode, and temperature on the reduction process. The results showed that water vapor added to the hydrogen during reduction caused a temporary stasis period of the open circuit voltage. The length of the temporary stasis period was almost irrelevant to the water vapor concentration. During reduction, the length of the temporary stasis period of the open circuit voltage was negatively associated with hydrogen concentration and temperature, but positively associated with Y<sub>2</sub>O<sub>3</sub> content of the YSZ material of the anode. After reduction, the SOFC showed better initial performance when the hydrogen concentration or the water vapor concentration during the reduction were higher. The classical shrinking core model can be used to explain these phenomena.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"58 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6bc2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Reduction of the nickel oxide-yttria stabilized zirconia (NiO-YSZ) anode is a significant step before the operation of a solid oxide fuel cell (SOFC). However, phenomena which occur during the reduction and their mechanism analyses are not summarized sufficiently. In this study, we investigated the influence of the hydrogen concentration, water vapor concentration of the reduction gas, Y2O3 content of the YSZ material of the anode, and temperature on the reduction process. The results showed that water vapor added to the hydrogen during reduction caused a temporary stasis period of the open circuit voltage. The length of the temporary stasis period was almost irrelevant to the water vapor concentration. During reduction, the length of the temporary stasis period of the open circuit voltage was negatively associated with hydrogen concentration and temperature, but positively associated with Y2O3 content of the YSZ material of the anode. After reduction, the SOFC showed better initial performance when the hydrogen concentration or the water vapor concentration during the reduction were higher. The classical shrinking core model can be used to explain these phenomena.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.