A Bifunctional Carbon-LiNO3 Composite Interlayer for Stable Lithium Metal Powder Electrodes as High Energy Density Anode Material in Lithium Batteries

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-09-11 DOI:10.1149/1945-7111/ad7295
Carlos Tafara Mpupuni, Orynbassar Mukhan, Ji-Su Yun and Sung-Soo Kim
{"title":"A Bifunctional Carbon-LiNO3 Composite Interlayer for Stable Lithium Metal Powder Electrodes as High Energy Density Anode Material in Lithium Batteries","authors":"Carlos Tafara Mpupuni, Orynbassar Mukhan, Ji-Su Yun and Sung-Soo Kim","doi":"10.1149/1945-7111/ad7295","DOIUrl":null,"url":null,"abstract":"Lithium metal remains a promising candidate for high-energy-density rechargeable batteries due to its exceptional specific capacity and low reduction potential. However, practical implementation of lithium metal anodes faces challenges such as dendrite formation, limited cycle life, and safety concerns. This study introduces a novel approach to enhance the performance of lithium metal powder (LMP)-based electrodes by embedding a LiNO3-carbon composite interlayer between the LMP electrode and the copper foil current collector. The N-rich carbon interlayer acts as a reservoir for LiNO3, enabling its gradual release to maintain prolonged stability of the interfacial reactions of the Li-metal and providing additional Li nucleation sites. Our findings demonstrate that the LiNO3-carbon composite effectively suppresses dendrite formation, improves reversible capacity, and stabilizes the solid electrolyte interphase. Additionally, we validated the fast-charging capabilities of the Li/NCM622 half-cell employing the LiNO3-carbon-coated Cu foil with LMP electrodes. Our results highlight the significant synergistic effect of the LiNO3 additive and carbon interlayer in enhancing the performance of lithium metal-based batteries.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"19 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad7295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal remains a promising candidate for high-energy-density rechargeable batteries due to its exceptional specific capacity and low reduction potential. However, practical implementation of lithium metal anodes faces challenges such as dendrite formation, limited cycle life, and safety concerns. This study introduces a novel approach to enhance the performance of lithium metal powder (LMP)-based electrodes by embedding a LiNO3-carbon composite interlayer between the LMP electrode and the copper foil current collector. The N-rich carbon interlayer acts as a reservoir for LiNO3, enabling its gradual release to maintain prolonged stability of the interfacial reactions of the Li-metal and providing additional Li nucleation sites. Our findings demonstrate that the LiNO3-carbon composite effectively suppresses dendrite formation, improves reversible capacity, and stabilizes the solid electrolyte interphase. Additionally, we validated the fast-charging capabilities of the Li/NCM622 half-cell employing the LiNO3-carbon-coated Cu foil with LMP electrodes. Our results highlight the significant synergistic effect of the LiNO3 additive and carbon interlayer in enhancing the performance of lithium metal-based batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种双功能碳-LiNO3 复合中间膜,用于将稳定的锂金属粉末电极用作锂电池中的高能量密度负极材料
金属锂因其超强的比容量和低还原电位,仍然是高能量密度充电电池的理想候选材料。然而,锂金属阳极的实际应用面临着枝晶形成、有限的循环寿命和安全问题等挑战。本研究介绍了一种提高基于锂金属粉末(LMP)电极性能的新方法,即在 LMP 电极和铜箔集流器之间嵌入一层 LiNO3 碳复合夹层。富含 N 的碳夹层可作为 LiNO3 的储层,使其逐渐释放,以保持锂金属界面反应的长期稳定性,并提供额外的锂成核位点。我们的研究结果表明,LiNO3-碳复合材料能有效抑制枝晶的形成,提高可逆容量,并稳定固态电解质间相。此外,我们还验证了锂/NCM622 半电池的快速充电能力,该半电池采用了带有 LMP 电极的 LiNO3 碳涂层铜箔。我们的研究结果凸显了 LiNO3 添加剂和碳中间膜在提高锂金属基电池性能方面的显著协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Electrochemical HOCl Production Modeling for an Electrochemical Catheter. Comprehensive Analysis of Commercial Sodium-Ion Batteries: Structural and Electrochemical Insights Electrochemical Behaviour of Nickel(II)-Rhenium(VII) And Electrodeposition of Nickel-Rhenium Alloy from Choline Chloride - Urea Deep Eutectic Solvent Optimization of Post-Annealing Temperature of RF Magnetron-Sputtered ZnO Thin Films for Enhancing Performances of UV Photodetectors Spatially Resolved Assessment and Analysis of Al-Zn, Mg, and Mg/Al-Zn Metal-Rich Primers Applied to AA 7075-T651 in Full Immersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1