Review—Principles and Applications of Electrochemical Polishing

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-09-11 DOI:10.1149/1945-7111/ad75bc
Yanqiu Xu, Yachun Mao, Muhammad Hammad Ijaz, Mohamed E. Ibrahim, Shiru Le, Fang Wang, Jie Jiang, Dazhao Chi, Maozhong An, Shuhuan Song, Yuhui Huang and Yuhan Zhang
{"title":"Review—Principles and Applications of Electrochemical Polishing","authors":"Yanqiu Xu, Yachun Mao, Muhammad Hammad Ijaz, Mohamed E. Ibrahim, Shiru Le, Fang Wang, Jie Jiang, Dazhao Chi, Maozhong An, Shuhuan Song, Yuhui Huang and Yuhan Zhang","doi":"10.1149/1945-7111/ad75bc","DOIUrl":null,"url":null,"abstract":"Electrochemical machining (ECM) is an efficient and precise manufacturing technology with broad prospects for numerous applications. As a subset of electrochemical machining, electrochemical polishing (ECP) is an advanced surface finishing method that utilizes electrochemical principles to produce smooth and reflective surfaces on various materials, particularly metals. This process is distinguished by its ability to refine surfaces without causing scratches or other forms of mechanical damage, thereby providing a significant advantage over traditional mechanical polishing techniques. The high processing efficiency of ECP renders it particularly suitable for industries that demand large-scale production and high-quality surface finishes. This work reviews the fundamental aspects of ECP, comparing three mechanisms: viscous film theory, salt film theory, and enhanced oxidation–dissolution equilibrium theory. Furthermore, it examines the factors influencing the effectiveness of ECP, including electrolyte composition, temperature, electropolishing time, voltage, and current. Applications of ECP in stainless steel, copper, nickel, and tungsten are also explored, along with a summary of its integration with advanced technologies. Finally, perspectives on the future development of ECP are discussed.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad75bc","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical machining (ECM) is an efficient and precise manufacturing technology with broad prospects for numerous applications. As a subset of electrochemical machining, electrochemical polishing (ECP) is an advanced surface finishing method that utilizes electrochemical principles to produce smooth and reflective surfaces on various materials, particularly metals. This process is distinguished by its ability to refine surfaces without causing scratches or other forms of mechanical damage, thereby providing a significant advantage over traditional mechanical polishing techniques. The high processing efficiency of ECP renders it particularly suitable for industries that demand large-scale production and high-quality surface finishes. This work reviews the fundamental aspects of ECP, comparing three mechanisms: viscous film theory, salt film theory, and enhanced oxidation–dissolution equilibrium theory. Furthermore, it examines the factors influencing the effectiveness of ECP, including electrolyte composition, temperature, electropolishing time, voltage, and current. Applications of ECP in stainless steel, copper, nickel, and tungsten are also explored, along with a summary of its integration with advanced technologies. Finally, perspectives on the future development of ECP are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回顾--电化学抛光的原理和应用
电化学加工(ECM)是一种高效、精确的制造技术,具有广阔的应用前景。作为电化学加工的一个分支,电化学抛光 (ECP) 是一种先进的表面精加工方法,它利用电化学原理在各种材料(尤其是金属)上加工出光滑、反光的表面。这种工艺的特点是能够在不造成划痕或其他形式机械损伤的情况下精加工表面,因此与传统的机械抛光技术相比具有显著优势。ECP 的加工效率高,特别适用于需要大规模生产和高质量表面抛光的行业。本研究回顾了 ECP 的基本原理,比较了三种机理:粘性膜理论、盐膜理论和增强氧化-溶解平衡理论。此外,它还研究了影响 ECP 效果的因素,包括电解液成分、温度、电解抛光时间、电压和电流。报告还探讨了 ECP 在不锈钢、铜、镍和钨中的应用,并总结了 ECP 与先进技术的整合。最后,还讨论了 ECP 的未来发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Nitride Lithium-ion Conductors with Enhanced Oxidative Stability Identifying Problematic Phase Transformations in Pb Foil Anodes for Sodium-Ion Batteries A Bifunctional Carbon-LiNO3 Composite Interlayer for Stable Lithium Metal Powder Electrodes as High Energy Density Anode Material in Lithium Batteries Review—Graded Catalyst Layers in Hydrogen Fuel Cells - A Pathway to Application-Tailored Cells Review—Principles and Applications of Electrochemical Polishing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1