{"title":"Low-current gliding DC discharge in high-speed flows","authors":"K N Kornev, A A Logunov, S A Dvinin","doi":"10.1088/1361-6463/ad726e","DOIUrl":null,"url":null,"abstract":"A low-current gliding discharge (current range 1–5 A) in high-speed air flows of 100–250 m s<sup>−1</sup> was experimentally studied. A high-voltage direct current source with a maximum voltage of 4.5 kV was used to create the discharge. The average electron concentration <italic toggle=\"yes\">n</italic><sub>e</sub> ∼ 10<sup>14</sup> cm<sup>−3</sup> and the plasma ionization degree were determined by measuring the Stark broadening of the hydrogen H<italic toggle=\"yes\"><sub>β</sub></italic> line (<italic toggle=\"yes\">λ</italic><sub>H<italic toggle=\"yes\">β</italic></sub> = 486.1 nm). The estimates of the electric field (<italic toggle=\"yes\">E</italic> ∼ 100 V cm <sup>−1</sup> ÷ 600 V cm<sup>−1</sup>) in the discharge positive column were found using time-synchronized high-speed video recordings and oscillograms. The gas rotational temperature <italic toggle=\"yes\">T</italic><sub>g</sub> = 7000–9500 K and the vibrational temperature <italic toggle=\"yes\">T</italic><sub>v</sub> = 7000–11 000 K were estimated using optical emission spectroscopy. Time-resolved spectroscopy is used to investigate the effective plasma channel spatial regions from which the N, NH, N<sub>2</sub><sup>+</sup>, O and OH molecules radiate. The difference of the obtained radii indicates the presence of a radial temperature gradient and inhomogeneous plasma composition in the discharge cross section. The possibility of using of gliding discharge to ignite hydrocarbon-air mixtures in the ramjet engines combustors has been experimentally demonstrated.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"5 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad726e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A low-current gliding discharge (current range 1–5 A) in high-speed air flows of 100–250 m s−1 was experimentally studied. A high-voltage direct current source with a maximum voltage of 4.5 kV was used to create the discharge. The average electron concentration ne ∼ 1014 cm−3 and the plasma ionization degree were determined by measuring the Stark broadening of the hydrogen Hβ line (λHβ = 486.1 nm). The estimates of the electric field (E ∼ 100 V cm −1 ÷ 600 V cm−1) in the discharge positive column were found using time-synchronized high-speed video recordings and oscillograms. The gas rotational temperature Tg = 7000–9500 K and the vibrational temperature Tv = 7000–11 000 K were estimated using optical emission spectroscopy. Time-resolved spectroscopy is used to investigate the effective plasma channel spatial regions from which the N, NH, N2+, O and OH molecules radiate. The difference of the obtained radii indicates the presence of a radial temperature gradient and inhomogeneous plasma composition in the discharge cross section. The possibility of using of gliding discharge to ignite hydrocarbon-air mixtures in the ramjet engines combustors has been experimentally demonstrated.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.