首页 > 最新文献

Journal of Physics D: Applied Physics最新文献

英文 中文
Recent progresses and applications on chiroptical metamaterials: a review 奇光超材料的最新进展与应用:综述
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-18 DOI: 10.1088/1361-6463/ad6f20
Yan Wang, Zeyu Wu, Wenming Yu and Zhengqi Liu
Chiroptical metamaterials have attracted considerable attention owing to their exciting opportunities for fundamental research and practical applications over the past 20 years. Through practical designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Chiroptical metamaterials therefore represent a special type of artificial structures for unique chiroptical activities. In this review, we present a comprehensive overview of the progresses in the development of chiroptical metamaterials. Chiroptical metamaterial progress enables applications, including asymmetric transmission, polarization conversion, chiral absorber, chiral imaging, chiral sensor and chiral emission. We also review fabrication techniques and design of chiroptical metamaterials based on deep learning. In the conclusion, we present possible further research directions in this field.
在过去 20 年里,手性超材料在基础研究和实际应用方面带来了令人兴奋的机遇,因而备受关注。通过实际设计,手性超材料的千扰响应可比天然手性材料高出几个数量级。因此,手性超材料是一种特殊的人工结构,具有独特的手性活动。在这篇综述中,我们将全面介绍奇光超材料的发展进展。自旋超材料的发展使其应用成为可能,包括非对称传输、偏振转换、手性吸收器、手性成像、手性传感器和手性发射。我们还回顾了基于深度学习的自旋超材料的制造技术和设计。最后,我们提出了该领域可能的进一步研究方向。
{"title":"Recent progresses and applications on chiroptical metamaterials: a review","authors":"Yan Wang, Zeyu Wu, Wenming Yu and Zhengqi Liu","doi":"10.1088/1361-6463/ad6f20","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6f20","url":null,"abstract":"Chiroptical metamaterials have attracted considerable attention owing to their exciting opportunities for fundamental research and practical applications over the past 20 years. Through practical designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Chiroptical metamaterials therefore represent a special type of artificial structures for unique chiroptical activities. In this review, we present a comprehensive overview of the progresses in the development of chiroptical metamaterials. Chiroptical metamaterial progress enables applications, including asymmetric transmission, polarization conversion, chiral absorber, chiral imaging, chiral sensor and chiral emission. We also review fabrication techniques and design of chiroptical metamaterials based on deep learning. In the conclusion, we present possible further research directions in this field.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulations of a low-pressure electrodeless ion source intended for air-breathing electric propulsion 用于喷气式电力推进的低压无电极离子源的数值模拟
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-17 DOI: 10.1088/1361-6463/ad7471
Marek Šťastný, Kryštof Mrózek, Karel Juřík, Lukáš Havlíček, Michal Novotný and Adam Obrusník
Air breathing electric propulsion (ABEP) systems offer a promising solution to extend the lifetime of very low earth orbit (VLEO) missions by using residual atmospheric particles as propellants. Such systems would operate in very low-pressure environments where plasma ignition and confinement prove challenging. In this contribution, we present results of a global plasma model (GPM) of a plasma ignited in a very low-pressure air mixture. The results are validated against experimental measurements acquired using a laboratory electrodeless ion source utilizing a resonator for plasma ignition. The device is specifically designed to operate within low-pressure environments as it holds potential applications in ABEP systems for VLEO missions. Parametric studies are carried out via GPM to investigate the resonant behavior and its implications. The potential of the model serving as a predictive tool is assessed through experimental validation against measured data, mainly investigating the extracted ion current dependency on operational pressure and external magnetic field strength. The verified model is further utilized to extrapolate additional information about the resonant plasma such as ion composition or a degree of ionization.
空气呼吸电力推进(ABEP)系统利用残余大气粒子作为推进剂,为延长甚低地球轨道(VLEO)飞行任务的寿命提供了一种前景广阔的解决方案。此类系统将在等离子体点燃和限制具有挑战性的极低压环境中运行。在本文中,我们介绍了在极低压空气混合物中点燃等离子体的全局等离子体模型(GPM)的结果。这些结果与实验室无极离子源利用谐振器点燃等离子体获得的实验测量结果进行了验证。该装置专门设计用于在低压环境中运行,因为它有可能应用于 VLEO 任务的 ABEP 系统。通过 GPM 进行了参数研究,以调查共振行为及其影响。通过对测量数据进行实验验证,评估了该模型作为预测工具的潜力,主要研究了提取的离子电流与运行压力和外部磁场强度的关系。经过验证的模型还可用于推断共振等离子体的其他信息,如离子成分或电离程度。
{"title":"Numerical simulations of a low-pressure electrodeless ion source intended for air-breathing electric propulsion","authors":"Marek Šťastný, Kryštof Mrózek, Karel Juřík, Lukáš Havlíček, Michal Novotný and Adam Obrusník","doi":"10.1088/1361-6463/ad7471","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7471","url":null,"abstract":"Air breathing electric propulsion (ABEP) systems offer a promising solution to extend the lifetime of very low earth orbit (VLEO) missions by using residual atmospheric particles as propellants. Such systems would operate in very low-pressure environments where plasma ignition and confinement prove challenging. In this contribution, we present results of a global plasma model (GPM) of a plasma ignited in a very low-pressure air mixture. The results are validated against experimental measurements acquired using a laboratory electrodeless ion source utilizing a resonator for plasma ignition. The device is specifically designed to operate within low-pressure environments as it holds potential applications in ABEP systems for VLEO missions. Parametric studies are carried out via GPM to investigate the resonant behavior and its implications. The potential of the model serving as a predictive tool is assessed through experimental validation against measured data, mainly investigating the extracted ion current dependency on operational pressure and external magnetic field strength. The verified model is further utilized to extrapolate additional information about the resonant plasma such as ion composition or a degree of ionization.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical surface breakdown characteristics of micro- and nano-Al2O3 particle co-doped epoxy composites 微纳米 Al2O3 粒子共掺环氧树脂复合材料的电表面击穿特性
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-17 DOI: 10.1088/1361-6463/ad773e
Guobao Zhang, Wei Yang, Lei Zhang, Zhengyang Wu, Mengyi Cai, Taiyun Zhu, Lei Sun, He Gao and Zhen Li
Epoxy microcomposites are basic materials for gas-insulated switchgear (GIS) spacers that are subjected to huge electrical stress. Previous works have indicated that nanoparticles are beneficial to dielectric performance. However, surface electrical breakdown, a typical fault in GIS of co-doped micro- and nanoparticles in epoxy composites, is seldom studied. In this work, numerous concentrations of micro- and nano-Al2O3 are co-doped into an epoxy matrix; the surface traps, surface charging, and surface breakdown voltages (Vsb) of the co-doped composites are studied, and the influence of micro- and nano-Al2O3 on the electrical surface breakdown is clarified. The results show that Vsb first decreases and then increases with the microparticles, and Vsb decreases from 25.34 kV to 19.52 kV. As the number of nanoparticles increases, Vsb increases and then decreases when the microparticle loading is low, but decreases and then increases when the microparticle loading exceeds 40 wt%. Micro-Al2O3 particles introduce surface shallow traps into epoxy composites, while small amounts of nano-Al2O3 introduce deep traps. Two different mechanisms dominate the surface charging and Vsb of epoxy micro-nanocomposites. When the surface conductivity is lower than 7 × 10−14 S, the surface charges are reduced by the suppression of electrode injection as the trap depth increases, and Vsb increases. When the surface conductivity exceeds 7 × 10−14 S, the surface charge dissipation rate increases with the surface conductivity and Vsb increases as the surface conductivity increases. Our work indicates that co-doped micro- and nano-particles should keep the surface conductivity away from the specic value (7 × 10−14 S) to safeguard insulation properties for GIS spacers.
环氧微复合材料是气体绝缘开关设备(GIS)隔板的基本材料,这些隔板承受着巨大的电应力。以往的研究表明,纳米粒子有利于提高介电性能。然而,对于环氧树脂复合材料中共同掺杂的微纳米粒子在 GIS 中的典型故障--表面电击穿,却很少进行研究。本研究将多种浓度的微纳米 Al2O3 共掺入环氧基体中,研究了共掺复合材料的表面陷阱、表面充电和表面击穿电压(Vsb),并阐明了微纳米 Al2O3 对表面电击穿的影响。结果表明,随着微颗粒的增加,Vsb 先减小后增大,Vsb 从 25.34 kV 减小到 19.52 kV。随着纳米微粒数量的增加,当微粒负载量较低时,Vsb先增大后减小,但当微粒负载量超过 40 wt% 时,Vsb 先减小后增大。微量 Al2O3 颗粒在环氧树脂复合材料中引入了表面浅陷阱,而少量纳米 Al2O3 则引入了深陷阱。环氧微纳米复合材料的表面电荷和 Vsb 由两种不同的机制主导。当表面电导率低于 7 × 10-14 S 时,随着陷阱深度的增加,表面电荷因电极注入的抑制而减少,Vsb 也随之增加。当表面电导率超过 7 × 10-14 S 时,表面电荷耗散率随着表面电导率的增加而增加,Vsb 也随着表面电导率的增加而增加。我们的研究结果表明,共掺杂微纳米粒子应使表面电导率远离特定值(7 × 10-14 S),以保障 GIS 间隔物的绝缘性能。
{"title":"Electrical surface breakdown characteristics of micro- and nano-Al2O3 particle co-doped epoxy composites","authors":"Guobao Zhang, Wei Yang, Lei Zhang, Zhengyang Wu, Mengyi Cai, Taiyun Zhu, Lei Sun, He Gao and Zhen Li","doi":"10.1088/1361-6463/ad773e","DOIUrl":"https://doi.org/10.1088/1361-6463/ad773e","url":null,"abstract":"Epoxy microcomposites are basic materials for gas-insulated switchgear (GIS) spacers that are subjected to huge electrical stress. Previous works have indicated that nanoparticles are beneficial to dielectric performance. However, surface electrical breakdown, a typical fault in GIS of co-doped micro- and nanoparticles in epoxy composites, is seldom studied. In this work, numerous concentrations of micro- and nano-Al2O3 are co-doped into an epoxy matrix; the surface traps, surface charging, and surface breakdown voltages (Vsb) of the co-doped composites are studied, and the influence of micro- and nano-Al2O3 on the electrical surface breakdown is clarified. The results show that Vsb first decreases and then increases with the microparticles, and Vsb decreases from 25.34 kV to 19.52 kV. As the number of nanoparticles increases, Vsb increases and then decreases when the microparticle loading is low, but decreases and then increases when the microparticle loading exceeds 40 wt%. Micro-Al2O3 particles introduce surface shallow traps into epoxy composites, while small amounts of nano-Al2O3 introduce deep traps. Two different mechanisms dominate the surface charging and Vsb of epoxy micro-nanocomposites. When the surface conductivity is lower than 7 × 10−14 S, the surface charges are reduced by the suppression of electrode injection as the trap depth increases, and Vsb increases. When the surface conductivity exceeds 7 × 10−14 S, the surface charge dissipation rate increases with the surface conductivity and Vsb increases as the surface conductivity increases. Our work indicates that co-doped micro- and nano-particles should keep the surface conductivity away from the specic value (7 × 10−14 S) to safeguard insulation properties for GIS spacers.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen vacancies kinetics in TaO 2 − ... TaO 2 中的氧空位动力学 - ...
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-17 DOI: 10.1088/1361-6463/ad7155
C Ferreyra, R Leal Martir, D Rubi and M J Sánchez
Oxygen vacancies (OV) are pervasive in metal oxides and play a pivotal role in the switching behaviour of oxide-based memristive devices. In this study we address OV dynamics in Pt/TaO /Ta2O /TaO /Pt devices, through a combination of experiments and theoretical simulations, In particular, we focus on the RESET transition (from low to high resistance) induced by the application of electrical pulse(s), by choosing different initial OV profiles and studying their kinetics during the mentioned process. We demonstrate that by selecting specific OV profiles it is possible to tune the characteristic time-scale of the RESET. Finally, we show that the implementation of gradual RESETs, induced by applying many (small) successive pulses, allows estimating the activation energies involved in the OV electromigration process. Our results help paving the way for OV engineering aiming at optimizing key memristive figures such as switching speed or power consumption, which are highly relevant for neuromorphic or in-memory computing implementations.
氧空位(OV)普遍存在于金属氧化物中,在基于氧化物的忆阻器件的开关行为中起着举足轻重的作用。在这项研究中,我们通过实验和理论模拟相结合的方法,研究了 Pt/TaO /Ta2O /TaO /Pt 器件中的氧空位动力学,特别是通过选择不同的初始氧空位曲线并研究其在上述过程中的动力学,重点研究了电脉冲诱导的 RESET 过渡(从低电阻到高电阻)。我们证明,通过选择特定的 OV 曲线,可以调整 RESET 的特征时间尺度。最后,我们表明,通过应用许多(小)连续脉冲诱导渐进式 RESET,可以估算出 OV 电迁移过程中涉及的活化能。我们的研究成果有助于为 OV 工程铺平道路,从而优化开关速度或功耗等与神经形态或内存计算实现高度相关的关键内存数据。
{"title":"Oxygen vacancies kinetics in TaO 2 − ...","authors":"C Ferreyra, R Leal Martir, D Rubi and M J Sánchez","doi":"10.1088/1361-6463/ad7155","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7155","url":null,"abstract":"Oxygen vacancies (OV) are pervasive in metal oxides and play a pivotal role in the switching behaviour of oxide-based memristive devices. In this study we address OV dynamics in Pt/TaO /Ta2O /TaO /Pt devices, through a combination of experiments and theoretical simulations, In particular, we focus on the RESET transition (from low to high resistance) induced by the application of electrical pulse(s), by choosing different initial OV profiles and studying their kinetics during the mentioned process. We demonstrate that by selecting specific OV profiles it is possible to tune the characteristic time-scale of the RESET. Finally, we show that the implementation of gradual RESETs, induced by applying many (small) successive pulses, allows estimating the activation energies involved in the OV electromigration process. Our results help paving the way for OV engineering aiming at optimizing key memristive figures such as switching speed or power consumption, which are highly relevant for neuromorphic or in-memory computing implementations.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dispersion compensation design of high-density stacking RFSS absorbers for wideband applications 用于宽带应用的高密度堆叠 RFSS 吸收器的色散补偿设计
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-16 DOI: 10.1088/1361-6463/ad7511
Zhinan Luo, Xiaoxiao Ding, Jie Yang, Yuhan Wu, Bichao Wang, Ling Miao, Shaowei Bie and Jianjun Jiang
A dispersion compensation design absorber realized by high-density stacking resistive frequency selective surface (RFSS) is proposed for wideband applications. Firstly, the quantitative relationship between the equivalent impedance of RFSS and the permittivity of the effective media is constructed with the help of the transmission matrix method. The dispersion regulation of permittivity is achieved by changing the pattern and the square resistance of RFSS. In terms of absorber design, a uniform absorber with dispersion manipulation is developed as a precursor absorber. The uniform absorber has an absorption performance better than −8.5 dB above 2 GHz at normal incidence. The loss mechanism is analyzed in detail by electric field distribution and surface power loss density distribution, indicating that the uniform design cannot achieve thickness saving when extending to low frequency. Therefore, a dispersion compensation design absorber is proposed to extend −10 dB bandwidth to 1.64–28.8 GHz. Experiment results agree well with the simulation results, validating the analytic methods and design principles.
针对宽带应用,提出了一种由高密度堆叠电阻频率选择表面(RFSS)实现的色散补偿设计吸收器。首先,利用传输矩阵法构建了 RFSS 等效阻抗与有效介质介电常数之间的定量关系。通过改变 RFSS 的图案和方阻,实现对介电常数的色散调节。在吸收器设计方面,开发了一种具有色散调节功能的均匀吸收器作为前驱吸收器。该均匀吸收器在正常入射角下 2 GHz 以上的吸收性能优于-8.5 dB。通过电场分布和表面功率损耗密度分布对损耗机理进行了详细分析,结果表明,当扩展到低频时,均匀设计无法实现厚度节省。因此,我们提出了一种色散补偿设计吸收器,将 -10 dB 带宽扩展到 1.64-28.8 GHz。实验结果与仿真结果十分吻合,验证了分析方法和设计原理。
{"title":"Dispersion compensation design of high-density stacking RFSS absorbers for wideband applications","authors":"Zhinan Luo, Xiaoxiao Ding, Jie Yang, Yuhan Wu, Bichao Wang, Ling Miao, Shaowei Bie and Jianjun Jiang","doi":"10.1088/1361-6463/ad7511","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7511","url":null,"abstract":"A dispersion compensation design absorber realized by high-density stacking resistive frequency selective surface (RFSS) is proposed for wideband applications. Firstly, the quantitative relationship between the equivalent impedance of RFSS and the permittivity of the effective media is constructed with the help of the transmission matrix method. The dispersion regulation of permittivity is achieved by changing the pattern and the square resistance of RFSS. In terms of absorber design, a uniform absorber with dispersion manipulation is developed as a precursor absorber. The uniform absorber has an absorption performance better than −8.5 dB above 2 GHz at normal incidence. The loss mechanism is analyzed in detail by electric field distribution and surface power loss density distribution, indicating that the uniform design cannot achieve thickness saving when extending to low frequency. Therefore, a dispersion compensation design absorber is proposed to extend −10 dB bandwidth to 1.64–28.8 GHz. Experiment results agree well with the simulation results, validating the analytic methods and design principles.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of c- and m- sapphire plane orientations on the structural and electrical properties of β-Ga2O3 thin films grown by metal-organic chemical vapor deposition c- 和 m- 蓝宝石平面取向对金属有机化学气相沉积法生长的 β-Ga2O3 薄膜的结构和电学特性的影响
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-16 DOI: 10.1088/1361-6463/ad76bb
E Serquen, F Bravo, Z Chi, L A Enrique, K Lizárraga, C Sartel, E Chikoidze and J A Guerra
This work presents a comprehensive investigation into the structural and electrical properties of Ga2O3 thin films grown via metal-organic chemical vapor deposition on both c- and m-plane sapphire substrates. Structural characterization revealed the β-Ga2O3 phase formation in both substrate orientations, with strong epitaxial preferential growth on c-plane substrates and polycrystalline films on m-plane substrates. Results show that Ga2O3/m-sapphire exhibits the lower electrical resistivity than its counterpart grown on c-sapphire. Activation energies of acceptor levels were estimated at ~1.4 and ~0.7 , for Ga2O3 films grown on c- and m-plane, respectively. This result shows that growing Ga2O3 on m-plane sapphire is beneficial to reach a weakly compensated sample. Cathodoluminescence analysis suggests that the additional low activation energy of ~0.18 observed in Ga2O3 grown with the highest oxygen flow on m-plane sapphire can be associated to thermally-induced migration of self-trapped hole states.
这项研究全面考察了通过金属有机化学气相沉积法在 c 面和 m 面蓝宝石衬底上生长的 Ga2O3 薄膜的结构和电气特性。结构表征结果表明,在两种衬底方向上都形成了β-Ga2O3相,在c面衬底上有强烈的优先外延生长,而在m面衬底上则形成了多晶薄膜。结果表明,Ga2O3/m-蓝宝石的电阻率低于在 c-蓝宝石上生长的同类薄膜。在 c 平面和 m 平面上生长的 Ga2O3 薄膜的受体水平活化能估计分别为 ~1.4 和 ~0.7。这一结果表明,在 m 面蓝宝石上生长 Ga2O3 有利于获得弱补偿样品。阴极荧光分析表明,在 m 面蓝宝石上以最高氧流生长的 Ga2O3 中观察到的 ~0.18 的额外低活化能可能与自捕获空穴态的热诱导迁移有关。
{"title":"Impact of c- and m- sapphire plane orientations on the structural and electrical properties of β-Ga2O3 thin films grown by metal-organic chemical vapor deposition","authors":"E Serquen, F Bravo, Z Chi, L A Enrique, K Lizárraga, C Sartel, E Chikoidze and J A Guerra","doi":"10.1088/1361-6463/ad76bb","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76bb","url":null,"abstract":"This work presents a comprehensive investigation into the structural and electrical properties of Ga2O3 thin films grown via metal-organic chemical vapor deposition on both c- and m-plane sapphire substrates. Structural characterization revealed the β-Ga2O3 phase formation in both substrate orientations, with strong epitaxial preferential growth on c-plane substrates and polycrystalline films on m-plane substrates. Results show that Ga2O3/m-sapphire exhibits the lower electrical resistivity than its counterpart grown on c-sapphire. Activation energies of acceptor levels were estimated at ~1.4 and ~0.7 , for Ga2O3 films grown on c- and m-plane, respectively. This result shows that growing Ga2O3 on m-plane sapphire is beneficial to reach a weakly compensated sample. Cathodoluminescence analysis suggests that the additional low activation energy of ~0.18 observed in Ga2O3 grown with the highest oxygen flow on m-plane sapphire can be associated to thermally-induced migration of self-trapped hole states.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-step pulsed laser deposition of carbon/metal oxynitride composites for supercapacitor application 应用于超级电容器的碳/氮氧化物金属复合材料的一步式脉冲激光沉积
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-16 DOI: 10.1088/1361-6463/ad76bc
Subrata Ghosh, Giacomo Pagani, Massimilano Righi, Chengxi Hou, Valeria Russo and Carlo S Casari
Advanced material composite of nanocarbons and metal-based materials provides a synergistic effect to obtain excellent electrochemical charge-storage performance and other properties. Herein, 3D porous carbon-metal oxynitride nanocomposites with tunable carbon/metal and oxygen/nitrogen ratio are synthesized uniquely by simultaneous ablation from two different targets by single-step pulsed laser deposition at room temperature. Co-ablation of titanium and vanadium nitride targets together with graphite allowed us to synthesize carbon-metal oxynitride porous nanocomposite and exploit them as a binder-free thin film supercapacitor electrode in aqueous electrolyte. We show that the elemental composition ratio and hence the structural properties can be tuned by selecting target configuration and by manipulating the ablation position. We investigate how this tuning capability impacts their charge-storage performances. We anticipate the utilization of as-synthesized various composites in a single PLD production run as next-generation active materials for flexible energy storage and optoelectronic applications.
纳米碳和金属基材料的先进复合材料具有协同效应,可获得优异的电化学储能性能和其他特性。在此,我们采用单步脉冲激光沉积法,在室温下同时烧蚀两种不同的靶材,独特地合成了碳/金属和氧/氮比例可调的三维多孔碳-金属氮氧化物纳米复合材料。氮化钛和氮化钒靶材与石墨的共烧蚀使我们得以合成碳-金属氧氮化物多孔纳米复合材料,并将其用作水性电解液中的无粘结剂薄膜超级电容器电极。我们的研究表明,可以通过选择目标配置和操纵烧蚀位置来调整元素组成比例,进而调整结构特性。我们研究了这种调整能力如何影响其电荷存储性能。我们预计,在一次 PLD 生产中合成的各种复合材料将作为下一代活性材料用于柔性储能和光电应用。
{"title":"One-step pulsed laser deposition of carbon/metal oxynitride composites for supercapacitor application","authors":"Subrata Ghosh, Giacomo Pagani, Massimilano Righi, Chengxi Hou, Valeria Russo and Carlo S Casari","doi":"10.1088/1361-6463/ad76bc","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76bc","url":null,"abstract":"Advanced material composite of nanocarbons and metal-based materials provides a synergistic effect to obtain excellent electrochemical charge-storage performance and other properties. Herein, 3D porous carbon-metal oxynitride nanocomposites with tunable carbon/metal and oxygen/nitrogen ratio are synthesized uniquely by simultaneous ablation from two different targets by single-step pulsed laser deposition at room temperature. Co-ablation of titanium and vanadium nitride targets together with graphite allowed us to synthesize carbon-metal oxynitride porous nanocomposite and exploit them as a binder-free thin film supercapacitor electrode in aqueous electrolyte. We show that the elemental composition ratio and hence the structural properties can be tuned by selecting target configuration and by manipulating the ablation position. We investigate how this tuning capability impacts their charge-storage performances. We anticipate the utilization of as-synthesized various composites in a single PLD production run as next-generation active materials for flexible energy storage and optoelectronic applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of systems for plasma activated water (PAW) for agri-food applications 设计用于农业食品应用的等离子活化水 (PAW) 系统
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-16 DOI: 10.1088/1361-6463/ad77de
N N Misra, Tejas Naladala and Khalid J Alzahrani
This review explores the engineering and design aspects of plasma activated water (PAW) systems, focusing on their application in food safety and agriculture. This review aims to bridge the gap between research and practical application, paving the way for the development of robust and efficient PAW systems for enhancing food safety and agricultural productivity. By examining a variety of activation methods, including direct gas ionization, underwater discharges, and dynamic interactions of ionized gases with liquids, this work discusses the mechanical designs that facilitate these processes, highlighting their scalability and efficiency. The discussion is grounded in a comprehensive relevant scientific and patent literature, offering a critical overview of the systems’ design parameters that influence the generation of reactive oxygen and nitrogen species (RONS). The designs reported in literature have employed three major approaches, viz. direct underwater discharges, gas ionization followed by introduction of plasma into the liquid, creation of gas liquid mixtures and subsequent ionization. The laboratory systems have relied on natural convective diffusion of the RONS into water, while most of the patents advocate use of forced convective diffusion of RONS to increase transfer rates. Despite widespread laboratory-scale research in PAW, the transition to industrial-scale systems remains underexplored.
本综述探讨了等离子体活化水(PAW)系统的工程和设计方面,重点是其在食品安全和农业方面的应用。本综述旨在弥合研究与实际应用之间的差距,为开发稳健高效的等离子活化水系统以提高食品安全和农业生产力铺平道路。通过研究各种活化方法(包括直接气体电离、水下放电以及电离气体与液体的动态相互作用),本论文讨论了促进这些过程的机械设计,并强调了它们的可扩展性和效率。讨论以全面的相关科学和专利文献为基础,对影响活性氧和氮物种(RONS)生成的系统设计参数进行了重要概述。文献中报道的设计采用了三种主要方法,即直接水下放电、气体电离后将等离子体引入液体、产生气液混合物并随后电离。实验室系统依赖于 RONS 向水中的自然对流扩散,而大多数专利则主张使用 RONS 的强制对流扩散来提高传输速率。尽管实验室规模的 PAW 研究十分广泛,但过渡到工业规模系统的研究仍然不足。
{"title":"Design of systems for plasma activated water (PAW) for agri-food applications","authors":"N N Misra, Tejas Naladala and Khalid J Alzahrani","doi":"10.1088/1361-6463/ad77de","DOIUrl":"https://doi.org/10.1088/1361-6463/ad77de","url":null,"abstract":"This review explores the engineering and design aspects of plasma activated water (PAW) systems, focusing on their application in food safety and agriculture. This review aims to bridge the gap between research and practical application, paving the way for the development of robust and efficient PAW systems for enhancing food safety and agricultural productivity. By examining a variety of activation methods, including direct gas ionization, underwater discharges, and dynamic interactions of ionized gases with liquids, this work discusses the mechanical designs that facilitate these processes, highlighting their scalability and efficiency. The discussion is grounded in a comprehensive relevant scientific and patent literature, offering a critical overview of the systems’ design parameters that influence the generation of reactive oxygen and nitrogen species (RONS). The designs reported in literature have employed three major approaches, viz. direct underwater discharges, gas ionization followed by introduction of plasma into the liquid, creation of gas liquid mixtures and subsequent ionization. The laboratory systems have relied on natural convective diffusion of the RONS into water, while most of the patents advocate use of forced convective diffusion of RONS to increase transfer rates. Despite widespread laboratory-scale research in PAW, the transition to industrial-scale systems remains underexplored.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wide-angle reflection control with a reflective digital coding metasurface for 5G communication systems 利用反射式数字编码元表面实现 5G 通信系统的广角反射控制
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-16 DOI: 10.1088/1361-6463/ad7510
Zhihao Mao, Da Li and Er-Ping Li
Metasurfaces have attracted widespread attention in recent years due to their powerful electromagnetic wave manipulation capabilities. This paper proposes and validates a single-polarized, angle-adjustable reflective digital coding metasurface. Each unit cell achieves independent reflection phase control by loading a PIN diode for on-off switching. The unit’s design and coding scheme are carefully optimized to ensure the performance of the proposed reconfigurable metasurface. As a validation, a prototype consisting of 16×16 elements is fabricated and measured, with a control signal provided by a field-programmable gate array controller. Experimental results demonstrate angle control of up to ±60° in the frequency range of 3.4 GHz–3.6 GHz, a peak gain of 24.9 dBi in a single channel, and gain exceeding 10 dBi across a 200 MHz operational bandwidth. Furthermore, the performance is validated in a communication system, yielding positive results. The proposed reflective digital coding metasurface contributes to the advancement of reconfigurable intelligent surfaces and holds promise for widespread adoption in various communication scenarios.
近年来,元表面因其强大的电磁波操纵能力而受到广泛关注。本文提出并验证了一种单偏振、角度可调的反射式数字编码元表面。每个单元通过加载一个 PIN 二极管进行开关,实现独立的反射相位控制。该单元的设计和编码方案经过精心优化,以确保所提议的可重构元表面的性能。作为验证,利用现场可编程门阵列控制器提供的控制信号,制作并测量了由 16×16 元件组成的原型。实验结果表明,在 3.4 GHz-3.6 GHz 频率范围内,角度控制可达 ±60°,单通道峰值增益为 24.9 dBi,在 200 MHz 工作带宽内增益超过 10 dBi。此外,还在通信系统中对其性能进行了验证,并取得了积极成果。所提出的反射式数字编码元表面有助于推动可重构智能表面的发展,并有望在各种通信场景中得到广泛应用。
{"title":"Wide-angle reflection control with a reflective digital coding metasurface for 5G communication systems","authors":"Zhihao Mao, Da Li and Er-Ping Li","doi":"10.1088/1361-6463/ad7510","DOIUrl":"https://doi.org/10.1088/1361-6463/ad7510","url":null,"abstract":"Metasurfaces have attracted widespread attention in recent years due to their powerful electromagnetic wave manipulation capabilities. This paper proposes and validates a single-polarized, angle-adjustable reflective digital coding metasurface. Each unit cell achieves independent reflection phase control by loading a PIN diode for on-off switching. The unit’s design and coding scheme are carefully optimized to ensure the performance of the proposed reconfigurable metasurface. As a validation, a prototype consisting of 16×16 elements is fabricated and measured, with a control signal provided by a field-programmable gate array controller. Experimental results demonstrate angle control of up to ±60° in the frequency range of 3.4 GHz–3.6 GHz, a peak gain of 24.9 dBi in a single channel, and gain exceeding 10 dBi across a 200 MHz operational bandwidth. Furthermore, the performance is validated in a communication system, yielding positive results. The proposed reflective digital coding metasurface contributes to the advancement of reconfigurable intelligent surfaces and holds promise for widespread adoption in various communication scenarios.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of GHz surface acoustic waves in (Sc,Al)N thin films grown on free-standing polycrystalline diamond wafers by plasma-assisted molecular beam epitaxy 等离子体辅助分子束外延技术在独立多晶金刚石晶片上生长的(Sc,Al)N 薄膜中产生 GHz 表面声波
IF 3.4 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-15 DOI: 10.1088/1361-6463/ad76ba
Mingyun Yuan, Duc V Dinh, Soumen Mandal, Oliver A Williams, Zhuohui Chen, Oliver Brandt and Paulo V Santos
Telecommunication of the next generation demands filters that can operate in the 10 GHz range with sufficient bandwidths. For surface-acoustic-wave (SAW) devices this prerequisite translates into high sound velocities and high piezoelectric couplings. Wurtzite AlN on diamond, which exploits the strong piezoelectricity of AlN with the very high SAW velocity of diamond, has been considered a promising platform. A significant boost (up to a factor of 4) of the piezoelectric response can be obtained by alloying AlN with Sc. Here, the main challenge lies in the synthesis of highly-oriented thin (Sc,Al)N films on diamond. In this work, we aim at establishing a platform for SAW devices using plasma-assisted molecular beam epitaxy for the deposition of Sc0.2Al0.8N on diamond. We investigate the structural properties related to SAW generation gearing towards applications at high frequencies. To this end, we prepare (Sc,Al)N thin films on polished polycrystalline diamond wafers and demonstrate the efficient generation of SAW modes with frequencies up to 8 GHz. Systematic studies of the dependence of the SAW velocity and electromechanical coupling coefficient on the Sc0.2Al0.8N film thickness is presented for various SAW modes. Our result demonstrates the potential of this material combination for future application that requires large bandwidth in the ultra-high frequency range.
下一代电信要求滤波器能在 10 GHz 范围内以足够的带宽工作。对于声表面波(SAW)设备来说,这一先决条件意味着高声速和高压电耦合。金刚石上的晶格氮化铝(Wurtzite AlN)利用了氮化铝的强压电性和金刚石的极高声表面波速度,被认为是一种很有前途的平台。通过将氮化铝与钪合金化,可大大提高压电响应(最高可达 4 倍)。这里的主要挑战在于在金刚石上合成高取向性的(Sc,Al)N 薄膜。在这项工作中,我们旨在利用等离子体辅助分子束外延技术在金刚石上沉积 Sc0.2Al0.8N,从而建立一个声表面波器件平台。我们研究了与声表面波产生有关的结构特性,以实现高频应用。为此,我们在抛光多晶金刚石晶片上制备了(Sc,Al)N 薄膜,并展示了频率高达 8 GHz 的声表面波模式的高效生成。针对各种声表面波模式,我们对声表面波速度和机电耦合系数与 Sc0.2Al0.8N 薄膜厚度的关系进行了系统研究。我们的研究结果证明了这种材料组合在未来需要超高频率范围大带宽的应用中的潜力。
{"title":"Generation of GHz surface acoustic waves in (Sc,Al)N thin films grown on free-standing polycrystalline diamond wafers by plasma-assisted molecular beam epitaxy","authors":"Mingyun Yuan, Duc V Dinh, Soumen Mandal, Oliver A Williams, Zhuohui Chen, Oliver Brandt and Paulo V Santos","doi":"10.1088/1361-6463/ad76ba","DOIUrl":"https://doi.org/10.1088/1361-6463/ad76ba","url":null,"abstract":"Telecommunication of the next generation demands filters that can operate in the 10 GHz range with sufficient bandwidths. For surface-acoustic-wave (SAW) devices this prerequisite translates into high sound velocities and high piezoelectric couplings. Wurtzite AlN on diamond, which exploits the strong piezoelectricity of AlN with the very high SAW velocity of diamond, has been considered a promising platform. A significant boost (up to a factor of 4) of the piezoelectric response can be obtained by alloying AlN with Sc. Here, the main challenge lies in the synthesis of highly-oriented thin (Sc,Al)N films on diamond. In this work, we aim at establishing a platform for SAW devices using plasma-assisted molecular beam epitaxy for the deposition of Sc0.2Al0.8N on diamond. We investigate the structural properties related to SAW generation gearing towards applications at high frequencies. To this end, we prepare (Sc,Al)N thin films on polished polycrystalline diamond wafers and demonstrate the efficient generation of SAW modes with frequencies up to 8 GHz. Systematic studies of the dependence of the SAW velocity and electromechanical coupling coefficient on the Sc0.2Al0.8N film thickness is presented for various SAW modes. Our result demonstrates the potential of this material combination for future application that requires large bandwidth in the ultra-high frequency range.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physics D: Applied Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1