{"title":"Recent progresses and applications on chiroptical metamaterials: a review","authors":"Yan Wang, Zeyu Wu, Wenming Yu and Zhengqi Liu","doi":"10.1088/1361-6463/ad6f20","DOIUrl":null,"url":null,"abstract":"Chiroptical metamaterials have attracted considerable attention owing to their exciting opportunities for fundamental research and practical applications over the past 20 years. Through practical designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Chiroptical metamaterials therefore represent a special type of artificial structures for unique chiroptical activities. In this review, we present a comprehensive overview of the progresses in the development of chiroptical metamaterials. Chiroptical metamaterial progress enables applications, including asymmetric transmission, polarization conversion, chiral absorber, chiral imaging, chiral sensor and chiral emission. We also review fabrication techniques and design of chiroptical metamaterials based on deep learning. In the conclusion, we present possible further research directions in this field.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"27 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6f20","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Chiroptical metamaterials have attracted considerable attention owing to their exciting opportunities for fundamental research and practical applications over the past 20 years. Through practical designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Chiroptical metamaterials therefore represent a special type of artificial structures for unique chiroptical activities. In this review, we present a comprehensive overview of the progresses in the development of chiroptical metamaterials. Chiroptical metamaterial progress enables applications, including asymmetric transmission, polarization conversion, chiral absorber, chiral imaging, chiral sensor and chiral emission. We also review fabrication techniques and design of chiroptical metamaterials based on deep learning. In the conclusion, we present possible further research directions in this field.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.