Zinc‐Triazolate Metal‐Organic Framework Assisted Synthesis of Germanium Nanoparticles Encapsulated in Nitrogen‐Doped Carbon as Anode Materials for Lithium‐Ion Batteries

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-09-04 DOI:10.1002/batt.202400442
Zhuo Wang, Xue Bai, Jiabao Dong, Kexin Zhang, Bin Zhao, Xiaoli Dong
{"title":"Zinc‐Triazolate Metal‐Organic Framework Assisted Synthesis of Germanium Nanoparticles Encapsulated in Nitrogen‐Doped Carbon as Anode Materials for Lithium‐Ion Batteries","authors":"Zhuo Wang, Xue Bai, Jiabao Dong, Kexin Zhang, Bin Zhao, Xiaoli Dong","doi":"10.1002/batt.202400442","DOIUrl":null,"url":null,"abstract":"Germanium (Ge) is demonstrated to be prospective as a lithium‐ion battery anode material, yet the cycling stability is undermined by substantial volume fluctuations, restricting its viability for practical applications. Here, we present a facile Zn‐based metal−organic framework (MOF) engaged route to produce Ge nanoparticles in situ encapsulated in nitrogen‐doped mesoporous carbon (denoted as Ge@N‐C) as an anode material. This method uses a zinc‐triazolate MOF (MET‐6) and commercial GeO2 as the hybrid carbon and Ge precursors. After a heating treatment, the Ge@N‐C composite is readily obtained along with the simultaneous thermal decomposition of MET‐6 and the reduction of GeO2. Benefiting from the mesoporous structure and high electrical conductivity of N‐C, along with the strong interaction between Ge and N‐C, the obtained Ge@N‐C electrode exhibits a significant reversible charge capacity of 1012.8 mAh g‐1 after 150 cycles at 0.1 A g‐1, and excellent rate capability. Furthermore, a reversible charge capacity of 521.1 mAh g‐1 can be maintained at 5.0 A g‐1 after 1000 cycles.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"309 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400442","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Germanium (Ge) is demonstrated to be prospective as a lithium‐ion battery anode material, yet the cycling stability is undermined by substantial volume fluctuations, restricting its viability for practical applications. Here, we present a facile Zn‐based metal−organic framework (MOF) engaged route to produce Ge nanoparticles in situ encapsulated in nitrogen‐doped mesoporous carbon (denoted as Ge@N‐C) as an anode material. This method uses a zinc‐triazolate MOF (MET‐6) and commercial GeO2 as the hybrid carbon and Ge precursors. After a heating treatment, the Ge@N‐C composite is readily obtained along with the simultaneous thermal decomposition of MET‐6 and the reduction of GeO2. Benefiting from the mesoporous structure and high electrical conductivity of N‐C, along with the strong interaction between Ge and N‐C, the obtained Ge@N‐C electrode exhibits a significant reversible charge capacity of 1012.8 mAh g‐1 after 150 cycles at 0.1 A g‐1, and excellent rate capability. Furthermore, a reversible charge capacity of 521.1 mAh g‐1 can be maintained at 5.0 A g‐1 after 1000 cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌-三唑烷金属有机框架辅助合成掺氮碳中封装的锗纳米颗粒作为锂离子电池的负极材料
锗(Ge)作为锂离子电池负极材料具有广阔的发展前景,但其循环稳定性因体积大幅波动而受到影响,限制了其在实际应用中的可行性。在此,我们提出了一种简便的锌基金属有机框架(MOF)参与路线,以原位生产封装在掺氮介孔碳(Ge@N-C)中的 Ge 纳米粒子,作为负极材料。该方法使用三唑锌MOF(MET-6)和商用GeO2作为碳和Ge的混合前驱体。加热处理后,随着 MET-6 的热分解和 GeO2 的还原,很容易得到 Ge@N-C 复合材料。得益于 N-C 的介孔结构和高导电性,以及 Ge 与 N-C 之间的强相互作用,所获得的 Ge@N-C 电极在 0.1 A g-1 的条件下循环 150 次后,显示出 1012.8 mAh g-1 的显著可逆电荷容量和优异的速率能力。此外,在 5.0 A g-1 条件下循环 1000 次后,可保持 521.1 mAh g-1 的可逆充电容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1