Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification

J. Hart, I. Manickam, M. Gulian, L. Swiler, D. Bull, T. Ehrmann, H. Brown, B. Wagman, J. Watkins
{"title":"Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification","authors":"J. Hart, I. Manickam, M. Gulian, L. Swiler, D. Bull, T. Ehrmann, H. Brown, B. Wagman, J. Watkins","doi":"arxiv-2409.06846","DOIUrl":null,"url":null,"abstract":"Stratospheric aerosols play an important role in the earth system and can\naffect the climate on timescales of months to years. However, estimating the\ncharacteristics of partially observed aerosol injections, such as those from\nvolcanic eruptions, is fraught with uncertainties. This article presents a\nframework for stratospheric aerosol source inversion which accounts for\nbackground aerosol noise and earth system internal variability via a Bayesian\napproximation error approach. We leverage specially designed earth system model\nsimulations using the Energy Exascale Earth System Model (E3SM). A\ncomprehensive framework for data generation, data processing, dimension\nreduction, operator learning, and Bayesian inversion is presented where each\ncomponent of the framework is designed to address particular challenges in\nstratospheric modeling on the global scale. We present numerical results using\nsynthesized observational data to rigorously assess the ability of our approach\nto estimate aerosol sources and associate uncertainty with those estimates.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stratospheric aerosols play an important role in the earth system and can affect the climate on timescales of months to years. However, estimating the characteristics of partially observed aerosol injections, such as those from volcanic eruptions, is fraught with uncertainties. This article presents a framework for stratospheric aerosol source inversion which accounts for background aerosol noise and earth system internal variability via a Bayesian approximation error approach. We leverage specially designed earth system model simulations using the Energy Exascale Earth System Model (E3SM). A comprehensive framework for data generation, data processing, dimension reduction, operator learning, and Bayesian inversion is presented where each component of the framework is designed to address particular challenges in stratospheric modeling on the global scale. We present numerical results using synthesized observational data to rigorously assess the ability of our approach to estimate aerosol sources and associate uncertainty with those estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平流层气溶胶源反演:噪声、可变性和不确定性量化
平流层气溶胶在地球系统中发挥着重要作用,可在数月至数年的时间尺度上影响气候。然而,估计部分观测到的气溶胶注入(如火山爆发产生的气溶胶)的特征充满了不确定性。本文提出了一个平流层气溶胶源反演框架,该框架通过贝叶斯近似误差方法考虑了气溶胶背景噪声和地球系统内部变异性。我们利用专门设计的地球系统模型,使用能源超大规模地球系统模型(ESM)进行模拟。我们提出了一个用于数据生成、数据处理、降维、算子学习和贝叶斯反演的综合框架,该框架的每个组成部分都是为应对全球尺度大气建模的特殊挑战而设计的。我们介绍了使用合成观测数据的数值结果,以严格评估我们的方法估计气溶胶源的能力以及与这些估计相关的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1