Mechanical properties of a novel negative Poisson's ratio gradient structure

Huiwen Qi, Guangyang Lu, Dongmei Zhu, Guoyong Liu
{"title":"Mechanical properties of a novel negative Poisson's ratio gradient structure","authors":"Huiwen Qi, Guangyang Lu, Dongmei Zhu, Guoyong Liu","doi":"10.1177/14644207241269605","DOIUrl":null,"url":null,"abstract":"A novel cellular structure is proposed based on bionic structure with negative Poisson's ratio characteristic, and the cell is periodically expanded in the in-plane direction to create a new honeycomb structure. The influence of gradient changes of the structural parameters on the load-bearing capacity and damping characteristics of the structure is investigated through a combination method of finite element numerical simulations and experiments. The results indicate that the concentric gradient arrangement of cell wall thickness and angle parameters, and the symmetrical gradient arrangement of cell height, wall thickness and angle parameters have the most significant influence on the static bearing capacity of the structure. In contrast, the gradient arrangement under the corner circle diameter has minimal effect on the static bearing capacity of the structure. Under the same conditions, the peak values of the transmissibility of C2 (large angle at constraint end and loading end, and smaller angle in the middle) and C3 structures (angle gradually increases from the loading end to the constraint end) are significantly reduced between the frequency 2 Hz and 1024 Hz. The peak values of the transmissibility of the structures C2 and C3 are respectively decreased by 20% and 25% compared to that of the non-gradient structure. This shows that the vibration damping effect of these two structures is better. The structure with the gradient change and the structure without the gradient change of the new honeycomb structure can both achieve certain vibration reduction and isolation from the middle to high frequency range.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241269605","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel cellular structure is proposed based on bionic structure with negative Poisson's ratio characteristic, and the cell is periodically expanded in the in-plane direction to create a new honeycomb structure. The influence of gradient changes of the structural parameters on the load-bearing capacity and damping characteristics of the structure is investigated through a combination method of finite element numerical simulations and experiments. The results indicate that the concentric gradient arrangement of cell wall thickness and angle parameters, and the symmetrical gradient arrangement of cell height, wall thickness and angle parameters have the most significant influence on the static bearing capacity of the structure. In contrast, the gradient arrangement under the corner circle diameter has minimal effect on the static bearing capacity of the structure. Under the same conditions, the peak values of the transmissibility of C2 (large angle at constraint end and loading end, and smaller angle in the middle) and C3 structures (angle gradually increases from the loading end to the constraint end) are significantly reduced between the frequency 2 Hz and 1024 Hz. The peak values of the transmissibility of the structures C2 and C3 are respectively decreased by 20% and 25% compared to that of the non-gradient structure. This shows that the vibration damping effect of these two structures is better. The structure with the gradient change and the structure without the gradient change of the new honeycomb structure can both achieve certain vibration reduction and isolation from the middle to high frequency range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型负泊松比梯度结构的力学特性
在具有负泊松比特性的仿生结构基础上,提出了一种新型蜂窝结构,并将蜂窝在平面方向上周期性扩展,形成一种新的蜂窝结构。通过有限元数值模拟和实验相结合的方法,研究了结构参数梯度变化对结构承载能力和阻尼特性的影响。结果表明,单元壁厚和角度参数的同心梯度布置,以及单元高度、壁厚和角度参数的对称梯度布置对结构的静态承载能力影响最大。相比之下,角圆直径下的梯度布置对结构静态承载力的影响最小。在相同条件下,C2 结构(约束端和加载端夹角较大,中间夹角较小)和 C3 结构(从加载端到约束端夹角逐渐增大)的传递率峰值在频率 2 Hz 至 1024 Hz 之间明显降低。与无梯度结构相比,C2 和 C3 结构的传递率峰值分别降低了 20% 和 25%。这表明这两种结构的减振效果更好。有梯度变化的新型蜂窝结构和无梯度变化的新型蜂窝结构都能在中高频范围内达到一定的减振和隔振效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
8.30%
发文量
166
审稿时长
3 months
期刊介绍: The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers. "The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Evaluation of the performance enhancement of asphalt concrete via graphene oxide incorporation: A multi-test approach Recent advancements in self-healing materials and their application in coating industry Investigations on microstructural, mechanical, and tribological properties of Al-Cu-Ni alloy in cast, heat-treated, and strain-softened conditions Influence of fish-scale powder addition and stacking order on mechanical and thermal properties of hybrid kenaf/glass polyester composites Wire-arc-additively manufactured Bi metallic structure: Mechanical properties and microstructural characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1