Latent thermal energy storage using solid-state phase transformation in caloric materials

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-08-28 DOI:10.1016/j.xcrp.2024.102175
Žiga Ahčin, Andrej Kitanovski, Jaka Tušek
{"title":"Latent thermal energy storage using solid-state phase transformation in caloric materials","authors":"Žiga Ahčin, Andrej Kitanovski, Jaka Tušek","doi":"10.1016/j.xcrp.2024.102175","DOIUrl":null,"url":null,"abstract":"<p>Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"451 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102175","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用热量材料中的固态相变储存潜热能
固-固相变材料在热能储存系统中具有相当大的应用潜力。与固液相变材料相比,这些材料的潜热通常较低,但它们的热导率明显更高,因此能够实现快速热充放电。在这里,我们证明了这一特性使它们在需要高动态运行的热能储存应用中特别有前途。通过数值分析(使用经过实验验证的数值模型)发现,与相应的传统相变材料相比,某些具有固-固相变的材料在热能储存应用中具有出色的容量-功率权衡能力。虽然大多数传统相变材料因潜热较大而普遍具有较高的热容量,但一些具有固态转化的金属材料(如镍钛基合金、锰-铜-镓-硼合金)的热输出功率最高可提高 10 倍。这些结果凸显了热固态材料在某些应用中超越传统潜热存储系统的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Lignin as a bioderived modular surfactant and intercalant for Ti3C2Tx MXene stabilization and tunable functions. Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1