Guangyuan Yang, Jing Che, Xiaokang Zhao, Xinxin Li, Sanwen Peng, Heng Yang, Bin Zhang and Jiuxiao Sun
{"title":"Ni doped carbon-based composites derived from waste cigarette polypropylene filter rod with electromagnetic wave absorption performance","authors":"Guangyuan Yang, Jing Che, Xiaokang Zhao, Xinxin Li, Sanwen Peng, Heng Yang, Bin Zhang and Jiuxiao Sun","doi":"10.1088/2053-1591/ad76fd","DOIUrl":null,"url":null,"abstract":"Polypropylene is widely used in the plastics industry, especially in the tobacco industry, served as cigarette filters to reduce tar and harm. However, it’s difficult to degrade these polypropylene plastics and suitable methods for recycling and reuse is urgent. This research proposes an efficient method for the reuse of polypropylene cigarette filters by mixing waste polypropylene filters with nickel source in different proportions, followed by a facile calcination treatment to prepare nickel-modified carbon-based composite materials with microwave absorption properties. Morphology and magnetic properties of as-prepared samples were analyzed via XRD, SEM, and VSM, exhibiting an increase in carbon content with raising nickel content. Nickel ion anchored on polypropylene fiber may facilitate better fixation of carbon chains during the polypropylene decomposition process. Among the as-prepared samples, CN2 exhibited superior microwave absorption performance, with an optimal absorption peak of −26.76 dB at 7.97 GHz when matched with a given thickness of 4.3 mm, and an effective absorption bandwidth of 3.64 GHz (8.04 GHz to 11.68 GHz) with a matching thickness of 3.5 mm, covering the X band. Therefore, the as-prepared microwave absorbers provides a feasible solution for the recycling and reuse of polypropylene filters, aligning with the tobacco industry requirements for sustainable development.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"95 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad76fd","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polypropylene is widely used in the plastics industry, especially in the tobacco industry, served as cigarette filters to reduce tar and harm. However, it’s difficult to degrade these polypropylene plastics and suitable methods for recycling and reuse is urgent. This research proposes an efficient method for the reuse of polypropylene cigarette filters by mixing waste polypropylene filters with nickel source in different proportions, followed by a facile calcination treatment to prepare nickel-modified carbon-based composite materials with microwave absorption properties. Morphology and magnetic properties of as-prepared samples were analyzed via XRD, SEM, and VSM, exhibiting an increase in carbon content with raising nickel content. Nickel ion anchored on polypropylene fiber may facilitate better fixation of carbon chains during the polypropylene decomposition process. Among the as-prepared samples, CN2 exhibited superior microwave absorption performance, with an optimal absorption peak of −26.76 dB at 7.97 GHz when matched with a given thickness of 4.3 mm, and an effective absorption bandwidth of 3.64 GHz (8.04 GHz to 11.68 GHz) with a matching thickness of 3.5 mm, covering the X band. Therefore, the as-prepared microwave absorbers provides a feasible solution for the recycling and reuse of polypropylene filters, aligning with the tobacco industry requirements for sustainable development.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.