Research on a frequency-increasing piezoelectric wave energy harvester based on gear mechanism and magnetic rotor

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION Smart Materials and Structures Pub Date : 2024-09-10 DOI:10.1088/1361-665x/ad765c
Renwen Liu, Bowen Yang, Wei Fan, Zheming Liu, Chensheng Wang and Lipeng He
{"title":"Research on a frequency-increasing piezoelectric wave energy harvester based on gear mechanism and magnetic rotor","authors":"Renwen Liu, Bowen Yang, Wei Fan, Zheming Liu, Chensheng Wang and Lipeng He","doi":"10.1088/1361-665x/ad765c","DOIUrl":null,"url":null,"abstract":"Wave energy is a widespread clean energy source, but harvesting low-frequency wave energy efficiently remains a challenge. In this paper, a frequency-increasing piezoelectric wave energy harvester (FPWEH) based on gear mechanism and magnetic rotor is proposed. The gear mechanism transforms the vertical motion of the wave into the higher-frequency rotational motion of the magnetic rotor. The magnetic rotor is equipped with several rotating magnets and one revolution of the magnetic rotor enables multiple excitations of the piezoelectric cantilevers. Therefore, the wave excitation frequency is increased, so that the FPWEH can obtain better output performance. The major factors influencing output performance are determined through theoretical and simulation analysis, and a test system to simulate the wave environment is established. According to experimental findings, the FPWEH can generate an output voltage of 69.82 V and a maximum power of 28.33 mW when the external resistance is 20 kΩ. It can also successfully power thermohygrometer and light-emitting diodes. These results validate the feasibility of the FPWEH for providing electricity to electronics with low power requirements. This research also offers a novel approach to harvesting low-frequency wave energy.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"12 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad765c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Wave energy is a widespread clean energy source, but harvesting low-frequency wave energy efficiently remains a challenge. In this paper, a frequency-increasing piezoelectric wave energy harvester (FPWEH) based on gear mechanism and magnetic rotor is proposed. The gear mechanism transforms the vertical motion of the wave into the higher-frequency rotational motion of the magnetic rotor. The magnetic rotor is equipped with several rotating magnets and one revolution of the magnetic rotor enables multiple excitations of the piezoelectric cantilevers. Therefore, the wave excitation frequency is increased, so that the FPWEH can obtain better output performance. The major factors influencing output performance are determined through theoretical and simulation analysis, and a test system to simulate the wave environment is established. According to experimental findings, the FPWEH can generate an output voltage of 69.82 V and a maximum power of 28.33 mW when the external resistance is 20 kΩ. It can also successfully power thermohygrometer and light-emitting diodes. These results validate the feasibility of the FPWEH for providing electricity to electronics with low power requirements. This research also offers a novel approach to harvesting low-frequency wave energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于齿轮机构和磁性转子的增频压电波能量收集器研究
波浪能是一种广泛应用的清洁能源,但如何高效地收集低频波浪能仍是一个挑战。本文提出了一种基于齿轮机构和磁转子的增频压电波能收集器(FPWEH)。齿轮机构将波浪的垂直运动转化为磁转子的高频旋转运动。磁性转子上装有多个旋转磁铁,磁性转子旋转一圈可实现对压电悬臂的多次激励。因此,可以提高激波频率,从而使 FPWEH 获得更好的输出性能。通过理论和仿真分析,确定了影响输出性能的主要因素,并建立了模拟波浪环境的测试系统。实验结果表明,当外部电阻为 20 kΩ 时,FPWEH 可产生 69.82 V 的输出电压和 28.33 mW 的最大功率。它还能成功地为温湿度计和发光二极管供电。这些结果验证了 FPWEH 为低功率电子器件供电的可行性。这项研究还提供了一种收集低频波能量的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
期刊最新文献
Nonlinear vibration of a loaded string in energy harvesting Three-dimensional free-standing heterostructures out of MoS2 and rGO with infused PDMS towards electromechanical pressure sensing An IGBT coupling structure with a smart service life reliability predictor using active learning Shape optimization of a non-uniform piezoelectric bending beam for human knee energy harvester A frequency steerable electromagnetic acoustic transducer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1