{"title":"Numerical investigation on the heat transfer in wind turbulence over breaking waves","authors":"Min Lu, Zixuan Yang, Guowei He, Lian Shen","doi":"10.1103/physrevfluids.9.084606","DOIUrl":null,"url":null,"abstract":"Heat transfer in wind turbulence over breaking waves is studied through direct numerical simulations. The air-water system is simulated on an Eulerian grid with the interface between the two phases captured by a coupled level set and volume-of-fluid method. To examine the effect of wave age, different cases representing slow, intermediate, and fast waves are considered for the scenario of air temperature being higher than the water temperature. The results show that the evolution of mean temperature profile responds nonmonotonically to the increasing wave age. At a small wave age, the mean temperature near the water surface increases after wave breaking. At intermediate and large wave ages, however, the temperature decreases after wave breaking, while the decrement magnitude is larger at the intermediate wave age. An investigation of the temperature fluctuation flux indicates that a combined effect of wave-coherent flux and turbulence-induced flux leads to a large magnitude of temperature decrement at the intermediate wave age. A further analysis of the production term in the transport equation of the turbulence-induced temperature flux elucidates the mechanism underlying the generation of the turbulence-induced flux at the intermediate wave age. The findings of the present study suggest that temperature responds in a more complex manner to wave age than velocity does and this phenomenon should be considered in models for air-sea interaction and weather forecasting.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"3 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084606","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Heat transfer in wind turbulence over breaking waves is studied through direct numerical simulations. The air-water system is simulated on an Eulerian grid with the interface between the two phases captured by a coupled level set and volume-of-fluid method. To examine the effect of wave age, different cases representing slow, intermediate, and fast waves are considered for the scenario of air temperature being higher than the water temperature. The results show that the evolution of mean temperature profile responds nonmonotonically to the increasing wave age. At a small wave age, the mean temperature near the water surface increases after wave breaking. At intermediate and large wave ages, however, the temperature decreases after wave breaking, while the decrement magnitude is larger at the intermediate wave age. An investigation of the temperature fluctuation flux indicates that a combined effect of wave-coherent flux and turbulence-induced flux leads to a large magnitude of temperature decrement at the intermediate wave age. A further analysis of the production term in the transport equation of the turbulence-induced temperature flux elucidates the mechanism underlying the generation of the turbulence-induced flux at the intermediate wave age. The findings of the present study suggest that temperature responds in a more complex manner to wave age than velocity does and this phenomenon should be considered in models for air-sea interaction and weather forecasting.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.