Comparison of conventional and machine learning regression models for accurate prediction of selected optical active components – A case study: The Gulf of Izmit

IF 5.3 3区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Marine pollution bulletin Pub Date : 2024-09-14 DOI:10.1016/j.marpolbul.2024.116942
{"title":"Comparison of conventional and machine learning regression models for accurate prediction of selected optical active components – A case study: The Gulf of Izmit","authors":"","doi":"10.1016/j.marpolbul.2024.116942","DOIUrl":null,"url":null,"abstract":"<div><p>This study hypothesizes that advanced machine learning (ML) models can more accurately predict certain critical water quality parameters in marine environments compared to conventional regression techniques. We specifically evaluated the spatio-temporal distribution of Chlorophyll-a (Chl-a) and Secchi Disk Depth (SDD) in the Gulf of Izmit using in-situ measurements and Sentinel-2 satellite imagery from October 2021 and 2022. Among the models tested, the Support Vector Regression (SVR) model showed better predictive performance, achieving the lowest RMSE for SDD (1.11–1.70 m) and Chl-a (1.16–4.97 mg/m<sup>3</sup>) and the lowest MAE for SDD (0.86–1.43 m) and Chl-a (1.03–3.17 mg/m<sup>3</sup>). Additionally, the study observed a shift from hypertrophic to eutrophic Chl-a conditions and from mesotrophic-eutrophic to oligotrophic SDD conditions between 2021 and 2022, aligning with SVR model predictions and in-situ observations. These findings underscore the potential of ML models to enhance the accuracy of water quality monitoring and management in marine ecosystems.</p></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X24009196","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study hypothesizes that advanced machine learning (ML) models can more accurately predict certain critical water quality parameters in marine environments compared to conventional regression techniques. We specifically evaluated the spatio-temporal distribution of Chlorophyll-a (Chl-a) and Secchi Disk Depth (SDD) in the Gulf of Izmit using in-situ measurements and Sentinel-2 satellite imagery from October 2021 and 2022. Among the models tested, the Support Vector Regression (SVR) model showed better predictive performance, achieving the lowest RMSE for SDD (1.11–1.70 m) and Chl-a (1.16–4.97 mg/m3) and the lowest MAE for SDD (0.86–1.43 m) and Chl-a (1.03–3.17 mg/m3). Additionally, the study observed a shift from hypertrophic to eutrophic Chl-a conditions and from mesotrophic-eutrophic to oligotrophic SDD conditions between 2021 and 2022, aligning with SVR model predictions and in-situ observations. These findings underscore the potential of ML models to enhance the accuracy of water quality monitoring and management in marine ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较传统和机器学习回归模型,准确预测选定的光学活性成分 - 案例研究:伊兹米特湾
本研究假设,与传统的回归技术相比,先进的机器学习(ML)模型可以更准确地预测海洋环境中的某些关键水质参数。我们利用 2021 年 10 月和 2022 年 10 月的现场测量数据和哨兵-2 号卫星图像,对伊兹米特湾叶绿素-a(Chl-a)和塞奇盘深度(SDD)的时空分布进行了具体评估。在测试的模型中,支持向量回归(SVR)模型显示出较好的预测性能,SDD(1.11-1.70 米)和 Chl-a(1.16-4.97 毫克/立方米)的 RMSE 最低,SDD(0.86-1.43 米)和 Chl-a(1.03-3.17 毫克/立方米)的 MAE 最低。此外,研究还观察到 2021 年至 2022 年期间,Chl-a 条件从富营养化向中营养化转变,SDD 条件从中富营养向低营养化转变,这与 SVR 模型预测和现场观测结果一致。这些发现强调了 ML 模型在提高海洋生态系统水质监测和管理的准确性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine pollution bulletin
Marine pollution bulletin 环境科学-海洋与淡水生物学
CiteScore
10.20
自引率
15.50%
发文量
1077
审稿时长
68 days
期刊介绍: Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.
期刊最新文献
Emerging contaminants as indicators of short-term environmental changes in an eutrophicated coastal lagoon Fluctuation asymmetry of otoliths from Coilia brachygnathus in Changhu Lake: A first study in inland waters of China Bridging the gaps through environmental DNA: A review of critical considerations for interpreting the biodiversity data in coral reef ecosystems Spatial variation of metal(loid)s in sediments of an Atlantic mesotidal estuary (Sado estuary, Portugal) Multigenerational analysis of reproductive timing and life cycle parameters in the marine rotifer Brachionus plicatilis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1