Paweł Moskal, Jakub Baran, Steven Bass, Jarosław Choiński, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Manish Das, Kamil Dulski, Kavya V. Eliyan, Katarzyna Fronczewska, Aleksander Gajos, Krzysztof Kacprzak, Marcin Kajetanowicz, Tevfik Kaplanoglu, Łukasz Kapłon, Konrad Klimaszewski, Małgorzata Kobylecka, Grzegorz Korcyl, Tomasz Kozik, Wojciech Krzemień, Karol Kubat, Deepak Kumar, Jolanta Kunikowska, Joanna Mączewska, Wojciech Migdał, Gabriel Moskal, Wiktor Mryka, Szymon Niedźwiecki, Szymon Parzych, Elena P. del Rio, Lech Raczyński, Sushil Sharma, Shivani Shivani, Roman Y. Shopa, Michał Silarski, Magdalena Skurzok, Faranak Tayefi, Keyvan T. Ardebili, Pooja Tanty, Wojciech Wiślicki, Leszek Królicki, Ewa Ł. Stępień
{"title":"Positronium image of the human brain in vivo","authors":"Paweł Moskal, Jakub Baran, Steven Bass, Jarosław Choiński, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Manish Das, Kamil Dulski, Kavya V. Eliyan, Katarzyna Fronczewska, Aleksander Gajos, Krzysztof Kacprzak, Marcin Kajetanowicz, Tevfik Kaplanoglu, Łukasz Kapłon, Konrad Klimaszewski, Małgorzata Kobylecka, Grzegorz Korcyl, Tomasz Kozik, Wojciech Krzemień, Karol Kubat, Deepak Kumar, Jolanta Kunikowska, Joanna Mączewska, Wojciech Migdał, Gabriel Moskal, Wiktor Mryka, Szymon Niedźwiecki, Szymon Parzych, Elena P. del Rio, Lech Raczyński, Sushil Sharma, Shivani Shivani, Roman Y. Shopa, Michał Silarski, Magdalena Skurzok, Faranak Tayefi, Keyvan T. Ardebili, Pooja Tanty, Wojciech Wiślicki, Leszek Królicki, Ewa Ł. Stępień","doi":"10.1126/sciadv.adp2840","DOIUrl":null,"url":null,"abstract":"<div >Positronium is abundantly produced within the molecular voids of a patient’s body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp2840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp2840","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Positronium is abundantly produced within the molecular voids of a patient’s body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
在正电子发射断层扫描(PET)过程中,病人体内的分子空隙中会大量产生正电子。它的特性会随着组织的亚分子结构和氧分压的变化而变化。目前的 PET 系统只能记录两个湮灭光子,无法提供有关正电子寿命的信息。这项研究利用专用的雅盖隆 PET 系统,同时检测放射性核素发射的湮灭光子和瞬时伽马射线,为胶质母细胞瘤脑瘤患者提供了正电子寿命的活体图像。瞬发伽马能提供正电子形成时间的信息。正电子湮灭产生的光子可用于重建其衰变的地点和时间。在本案例研究中,所测定的胶质母细胞瘤细胞中的正电子和正电子寿命比唾液腺和健康脑组织中的正电子和正电子寿命短,这表明正电子成像可用于体内疾病诊断。
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.